Li-ion diffusion in Li-ion battery material $\text{LiFe}_{1-x}\text{Mn}_x\text{PO}_4$

I. Umegaki,^{*1} H. Nozaki,^{*1} G. Kobayashi,^{*2} R. Kanno,^{*3} M. Månsson,^{*4} A. Berlie,^{*5} I. Watanabe,^{*5}

and J. Sugiyama^{*1}

For the development of on-board batteries, the Liion battery is required to operate at high voltages. For realizing a practical Li-ion battery, a solid solution of the olivine-type lithium iron/manganese phosphate $(LiFePO_4 \text{ and } LiMnPO_4)$ is used as the positive electrode material. Olivine lithium phosphate is superior in terms of stability and is a low cost material. The tetrahedron PO_4 is so stable that oxygen desorption hardly occurs. Compared to other positive electrode materials such as $LiCoO_2$, olivine lithium phosphate is produced at a low cost because it contains no transition metals. High charge/discharge voltage can be steadily obtained for the Li(Fe,Mn)PO₄ solid solution. It is noted that the LiFe_{1-x}Mn_xPO₄ ($x\sim 0.7$) solid solution is used for the realization of a practical Li-ion battery.

Fig. 1. x dependence of the $D_{\rm Li}$ at 300 K. The data for x = 0 is reported in Ref. 1 and the data for x = 0.2, 0.4, 0.6, 0.9 and 1 have been obtained with EMU spectrometer in ISIS.

Fig. 2. Temperature dependences of (a) Δ (open circle) and (b) ν (closed circle) obtained for LiFe_{0.2}Mn_{0.8}PO₄.

We investigated Li diffusion in LiFePO₄ and

Terrera informa Center

LiMnPO₄ by μ^+ SR¹⁾. However, we could not obtain information about Li diffusion for LiMnPO₄, because μ^+ SR spectra were strongly affected by magnetic moment of Mn²⁺. Although the diffusive nature of Lithium is represented in the dynamic Kubo-Toyabe (KT) type relaxed signal in zero field (ZF) μ^+ SR measurements, the small changes in KT signal are hidden by fast relaxed signal caused by the magnetic moment of Mn²⁺. In order to avoid the magnetic effect due to Mn²⁺, we meausred μ^+ SR spectra on LiFe_{1-x}Mn_xPO₄ with smaller x to presume the Li diffusive nature in LiFe_{1-x}Mn_xPO₄ with larger x (Fig. 1).

In order to investigate Li-ion diffusion in the solid solution similar to the one used in the practical battery, we measured μ^+ SR spectra on LiFe_{0.2}Mn_{0.8}PO₄. In x=0.8 samples, the ZF- μ^+ SR spectrum is fitted by the sum of the exponentially relaxed static KT function and fast relaxation, asumming the volume fraction determined for smaller x as the initial value. Then, the ZF- μ^+ SR spectrum exhibits dynamic KT function at temperatures above 150 K. By fitting the ZFand LF-spectra with a dynamic KT function, the field fluctuation rate (ν) , relaxation rate (λ) and the field distribution width (Δ) were obtained. For x=0.8, ν rapidly starts to increase and Δ starts to decrease at 150 K (Fig. 2). This indicates that Li-ion diffusion occurs above 150 K. The diffusion coefficient is estimated as $D_{\rm Li} = 2.1 \times 10^{-10} (\rm cm^2/s)$ at 300 K.

By utilizing ARGUS spectrometer to obtain a large asymmetry for the KT signal, we obtained additional data to the systematic results taken with EMU spectrometer for the solid solution, $\text{LiFe}_{1-x}\text{Mn}_x\text{PO}_4$ with x = 0.2 - 1. There appers to be a peak in D_{Li} between x=0.6 and x=1 (Fig. 1). However, we cannot conclude that D_{Li} has a small peak around x=0.8 since we have measured only for x=0.6 and 0.9. We would like to study in detail the region between x=0.6 - 0.9, since the composition is very close to that used in a practical Li-ion battery.

We also measured μ^+ SR spectrum on x=0 sample, however, the obtained data was unsatisfactory. It is reported in Ref. 1 that $D_{\text{Li}}=3.6\times10^{-10}(\text{cm}^2/\text{s})$ at 300 K. Since D_{Li} changes drastically between x=0 and 0.2, we need to try to confirm such large changes.

The activation energy $E_{\rm a}$ was estimated from the relation $E_{\rm a}=k_{\rm B}T\ln(\nu)$ to be 53.0 meV for x=0.8. There may be a peak in $E_{\rm a}$ between x=0.6 and 1 (not shown).

Reference

 J. Sugiyama et al., Phys. Rev. B 85, 054111 (2012).

^{*1} Toyota Central Research and Development Labs., Inc.

^{*&}lt;sup>2</sup> Institute for Molecular Science

^{*&}lt;sup>3</sup> Tokyo Institute of Technology

^{*4} KTH Royal Institute of Technology

^{*&}lt;sup>5</sup> RIKEN Nishina Center