Magnetic moment measurement of isomeric state in ⁷⁵Cu

Y. Ichikawa,^{*1} A. Takamine,^{*1} H. Nishibata,^{*2} K. Imamura,^{*1,*3} T. Fujita,^{*1,*2} T. Sato,^{*4} S. Momiyama,^{*5}
Y. Shimizu,^{*1} D. S. Ahn,^{*1} K. Asahi,^{*4} H. Baba,^{*1} D. L. Balabanski,^{*1,*6} F. Boulay,^{*1,*7,*8} J. M. Daugas,^{*1,*8}
T. Egami,^{*9} N. Fukuda,^{*1} C. Funayama,^{*4} T. Furukawa,^{*10} G. Georgiev,^{*11} A. Gladkov,^{1,*12} N. Inabe,^{*1}
Y. Ishibashi,^{*1,*13} Y. Kobayashi,^{*14} S. Kojima,^{*4} A. Kusoglu,^{*11,*15} T. Kawaguchi,^{*9} T. Kawamura,^{*2}
I. Mukul,^{*16} M. Niikura,^{*5} T. Nishizaka,^{*9} A. Odahara,^{*2} Y. Ohtomo,^{*1,*4} D. Ralet,^{*11} T. Shimoda,^{*2}
G. S. Simpson,^{*17} T. Sumikama,^{*1} H. Suzuki,^{*1} H. Takeda,^{*1} L. C. Tao,^{*1,*18} Y. Togano,^{*4} D. Tominaga,^{*9}

The ⁷⁵Cu nucleus has attracted much attention because the ground-state spin parity changes from $3/2^{-}$ to $5/2^{-1}$ as a result of the migration of the $5/2^{-1}$ levels along the Cu isotopic chain²⁾. The 75 Cu nucleus has two isomeric states³⁾ at 62-keV and 66-keV levels directly decaying to the ground state⁴⁾, one of which is expected to have a spin parity of $3/2^{-}$ inherited from the ground state of ⁷³Cu. In order to investigate the wave function of the $3/2^{-}$ state and to compare it with the $5/2^-$ ground state¹⁾, the magnetic moment of the isomeric state of ⁷⁵Cu was measured.

The experiment was carried out at the BigRIPS at the RIBF. The two-step fragmentation scheme with momentum-dispersion matching⁵⁾ was employed to produce highly spin-aligned ⁷⁵Cu. In the reaction at F0, ⁷⁶Zn was produced by a fission reaction of a 345-MeV/nucleon ²³⁸U beam on a ⁹Be target with a thickness of 1.29 g/cm². The secondary 76 Zn beam was introduced to a second target of wedge-shaped aluminum with a mean thickness of 0.81 g/cm^2 , placed at the momentum-dispersive focal plane F5. The 75 Cu nuclei including those in isomeric state 75m Cu were produced through one-proton removal from ⁷⁶Zn. The ⁷⁵Cu beam was subsequently transported to F7 under the condition that the momentum dispersion between F5 and F7 was matched to that between F3 and F5.

The q-factor of 75m Cu was determined by means of the time-differential perturbed angular distribution (TDPAD) methods. The TDPAD apparatus, placed at F8, consists of a dipole magnet, a Cu crystal stop-

- Department of Physics, Tokyo Institute of Technology *5
- Department of Physics, University of Tokyo
- *6 ELI-NP, IFIN-HH
- *7 GANIL, CEA/DSM-CNRS/IN2P3
- *8 CEA, DAM, DIF
- *9 Department of Advanced Sciences, Hosei University
- *10 Department of Physics, Tokyo Metropolitan University
- *11CSNSM, CNRS/IN2P3, Université Pris-Sud
- *12 Department of Physics, Kyungpook National University
- *13 Department of Physics, University of Tsukuba
- *14Department of Informatics and Engineering, University of Electro-Communications
- *15Department of Physics, Istanbul University
- *16Department of Particle Physics, Weizmann Institute
- $^{\ast 17}$ LPSC, Université Joseph Fourier Grenoble 1, CNRS/IN2P3
- *18 School of Physics, Peking University
- *¹⁹ Intsituut voor Kern-en Srralingsfysica, K. U. Leuven

Preliminary 04 0 2 R(f) -0.2 -0.4 -0.6 100 200 500 600 700 800 300 400 Time (ns)

Fig. 1. Preliminary result of R(t) ratio for the 66-keV γ ray. The solid line represents the sine function after fitting to the the experimental R(t) ratio.

per, Ge detectors, and a plastic scintillator. The dipole magnet provided a static magnetic field of $B_0 =$ 0.200 T. ^{75m}Cu was implanted into the Cu stopper, and γ rays were detected with four Ge detectors located perpendicular to B_0 at a distance of 7.0 cm from the stopper and at angles of ± 45 and ± 135 degrees with respect to the beam axis. The plastic scintillator of 0.1 mm in thick was placed upstream of the stopper, the signal from which provided the time-zero trigger.

The R(t) ratio representing the change of anisotropy of γ rays synchronized with the spin precession was obtained according to

$$R(t) = \{N_{13}(t) - \epsilon N_{24}(t)\} / \{N_{13}(t) + \epsilon N_{24}(t)\}, (1)$$

where $N_{13}(t)$ and $N_{24}(t)$ are the sums of the photopeak count rates at the two pairs of Ge detectors placed diagonally to each other, and ϵ denotes a correction factor for the difference in the detection efficiency. In this experiment we observed an oscillation pattern only for the 66-keV γ ray with over 5σ significance, as shown in Fig. 1. The magnitude of spin alignment was found to be larger than 50%. The detailed analysis and the deduction of the *q*-factor is in progress.

References

- 1) K. T. Flanagan et al.: Phys. Rev. Lett. 103, 142501 (2009).
- 2) S. Franchoo et al.: Phys. Rev. Lett. 81, 3100 (1998).
- 3) J. M. Daugas et al.: Phys. Rev. C 81, 034304 (2010).
- 4) C. Petrone et al.: Acta. Phys. Pol. B 44, 637 (2013).
- 5) Y. Ichikawa et al.: Nature Phys. 8, 918 (2012).

H. Ueno,^{*1} H. Yamazaki,^{*1} and X. F. Yang^{*19}

^{*1} **RIKEN** Nishina Center

^{*2} Department of Physics, Osaka University *3

Department of Physics, Meiji University *4