The $({}^{16}O, {}^{16}F(0^{-}))$ reaction to study spin-dipole 0^{-} states

M. Dozono,^{*1} T. Uesaka,^{*2} K. Fujita,^{*3} N. Fukuda,^{*2} M. Ichimura,^{*2} N. Inabe,^{*2} S. Kawase,^{*1} K. Kisamori,^{*1} Y. Kiyokawa,^{*1} K. Kobayashi,^{*4} M. Kobayashi,^{*1} T. Kubo,^{*2} Y. Kubota,^{*1} C. S. Lee,^{*1} M. Matsushita,^{*1} S. Michimasa,^{*1} H. Miya,^{*1} A. Ohkura,^{*3} S. Ota,^{*1} H. Sagawa,^{*2,*5} S. Sakaguchi,^{*3} H. Sakai,^{*2} M. Sasano,^{*2} S. Shimoura,^{*1} Y. Shindo,^{*3} L. Stuhl,^{*2} H. Suzuki,^{*2} H. Tabata,^{*3} M. Takaki,^{*1} H. Takeda,^{*2} H. Tokieda,^{*1} T. Wakasa,^{*3} K. Yako,^{*1} Y. Yanagisawa,^{*2} J. Yasuda,^{*3} R. Yokoyama,^{*1} K. Yoshida,^{*2} and J. Zenihiro^{*2}

We proposed the parity-transfer (¹⁶O, ¹⁶F(0⁻)) reaction as a powerful tool to study spin-dipole (SD) 0⁻ states in nuclei¹). The parity-transfer reaction has a unique selectivity to unnatural-parity states, which is an advantage over the other reactions used thus far. As the first (¹⁶O, ¹⁶F(0⁻)) measurement, the experiment for a ¹²C target was performed with the SHARAQ spectrometer. The known 0⁻ state at $E_x = 9.3$ MeV in ¹²B²) serves as a benchmark to verify the effectiveness of this reaction. The experimental setup and method can be found in Ref.³.

The preliminary result of the excitation-energy spectrum for the ${}^{12}C({}^{16}O, {}^{16}F(0^-)){}^{12}B$ reaction at $\theta_{lab} = 0^{\circ} - 0.25^{\circ}$ is shown in Fig. 1. The energy resolution is 2.6 MeV in FWHM. We note that the events at $E_x \sim -10$ MeV are due to the $({}^{16}O, {}^{16}F(0^-))$ reaction on hydrogens in the plastic scintillator used as a reaction target. The obtained distribution is largely different from those previously obtained by other reaction probes such as (n, p) and $(d, {}^{2}\text{He})$ (e.g., see Fig. 1 in Ref.⁴⁾). A distinct difference is that the 1⁺ groundstate Gamow-Teller (GT) transition is strongly hindered. Furthermore, an enhancement at $E_x \sim 9$ MeV can be seen, which is due to the 0⁻ state at $E_x =$ 9.3 MeV. Therefore, the obtained distribution shows high selectivity of the present reaction to 0⁻ states.

Fig. 1. Preliminary result of the excitation-energy spectrum for the ${}^{12}C({}^{16}O,{}^{16}F(0^-)){}^{12}B$ reaction at $\theta_{lab} = 0^{\circ} - 0.25^{\circ}$.

In order to extract the yield of the 0^- state, we performed peak fitting, and the results are shown as the solid lines in Fig. 1. Figure 2 shows the angular

 $^{\ast 3}$ $\,$ Department of Physics, Kyushu University

distribution for the 0^- state at $E_x = 9.3$ MeV together with the results for the 1^+ g.s. and the $2^$ state at $E_x = 4.4$ MeV. The solid curves denote the results calculated by the distorted-wave Born approximation (DWBA). The DWBA calculations predict the oscillatory patterns of the cross sections that are different depending on the spin-parity. The 0^- has the strong forward peaking, while the other states, 1^+ and 2^- , have the first maximum at finite angles. These patterns reproduce the experimental data very well. Thus, the oscillatory pattern of the angular distribution allows a clear spin-parity determination for the unnatural-parity state. Further analysis is underway to finalize experimental results.

Fig. 2. Measured and calculated differential cross sections for $E_x = 9.3$ MeV, 0.0 MeV, and 4.4 MeV states.

References

- M. Dozono et al.: RIKEN Accel. Prog. Rep. 45, 10 (2012).
- 2) H. Okamura et al.: Phys. Rev. C 66, 054602 (2002).
- M. Dozono et al.: RIKEN Accel. Prog. Rep. 48, 58 (2015).
- 4) H. Okamura et al.: Phys. Lett. B 345, 1 (1995).

^{*1} Center for Nuclear Study, University of Tokyo

^{*2} RIKEN Nishina Center

^{*4} Rikkyo University

^{*5} Center for Mathematics and Physics, University of Aizu