Measurement of nuclear magnetic moment of neutron-rich ³⁹S

Y. Ishibashi,^{*1,*2} Y. Ichikawa,^{*1} A. Takamine,^{*1} A. Gladkov,^{*1,*3} K. Imamura,^{*1,*4} T. Fujita,^{*1.*5} T. Sato,^{*6}

T. Nishizaka,^{*7} Y. Ohtomo,^{*6} A. Ozawa,^{*2} D. Tominaga,^{*7} H. Yamazaki,^{*1} A. Yoshimi,^{*9} and H. Ueno^{*1}

Ground-state nuclear electromagnetic moments of unstable nuclei have been measured with the β -ray detected nuclear magnetic resonance (β -NMR) method ¹⁾ using fragmentation-induced spin-polarized radioactive isotope (RI) beams²⁾. In this method, a resonance can be observed when all three conditions are met at the same time: 1) a polarized RI beam is produced; 2) the frequency range of the oscillating magnetic field in β -NMR measurements covers a resonance frequency; and 3) polarization is maintained in the stopper material during count time. These conditions complicate β -NMR measurements. In order to investigate the production of spin polarization separately from the resonance scan, a new adiabatic field rotation (AFR) system has been developed.^{3,4})

The experiment was carried out at the RIKEN Projectile Fragment Separator (RIPS) at the RI Beam Factory operated by RIKEN Nishina Center in September 2015. Nuclear spin-polarized ³⁹S nuclei were produced by bombarding ⁴⁸Ca ions on a 0.52-mm-thick ⁹Be target for the first time. The ${}^{48}Ca^{17+}$ ions were accelerated up to 63 MeV/nucleon and the intensity of the primary beam was typically ~ 200 pnA on the target. The fragments emitted into the angle from 1.5° to 5.9° relative to the primary beam with the momentum $p = p_0 \times (1.02 \pm 0.02)$, where p_0 is the peak in the distribution, were selected by the RIPS. A wedge-shaped degrader (148.8 mg/cm^2) was used for energy loss separation, and then, the ³⁹S ions were transported to the AFR and β -NMR apparatus. Next, they were implanted into a CaS crystal together with inseparable fragments as contaminants that became low energy β ray emitters. Under these conditions, the beam purity of 39 S was about 70%.

First, AFR measurements were conducted with ³⁹S nuclei. The experimental setup of the AFR measurement is described in Ref. 5). The maximum asymmetry change (AP) is normalized to be a product of the asymmetry parameter A and polarization P. The AP values for AFR measurements of ³⁹S in CaS are shown in Fig. 1, where the plot points 1-5 correspond

- ^{*2} Institute of Physics, University of Tsukuba
- *³ Department of Physics, Kyungpook National University
- ^{*4} Department of Physics, Meiji University
- *5 Department of Physics, Osaka University
- *6 Department of Physics, Tokyo Institute of Technology
- ^{*7} Department of Physics, Hosei University
- *8 School of Physics and State Key Laboratory of Nuclear Physics and Technology, Pekin University
- *9 Research Core for Extreme Quantum World, Okayama University

to the conditions shown in Table 1. Table 1 shows the time sequence of beam on/off period, selected momentum, selected angle, and obtained yield of β -ray from ³⁹S (Y_{β}). As per the results of AFR measurements, we were successfully in achieving nuclear spinpolarization.

Second, β -NMR measurements by means of the adiabatic fast passage (AFP) method were carried out with ³⁹S nuclei. The experimental setup of the AFP-NMR measurement is the same as described in Ref. 6). Because the range of theoretically predicted g-factor is very wide, a fast switching system was used.⁷⁾ In this measurement, the g-factor search was performed in the region 0.14 < g < 1.49. The results of the AFP-NMR measurements are under analysis.

Fig. 1. Obtained AP value of ³⁹S at room temperature.

Table 1. Measurement conditions and obtained Y_{β}

#	Time sequence	Momentum $[\%]$	Angle	$Y_{\beta} [cps]$
1	2 s - 30 s	$1 \le \Delta p/p_0 \le 4$	$\theta \ge 1.5^{\circ}$	140
2	2 s - 30 s	$1 \le \Delta p/p_0 \le 4$	$\theta \ge 1.0^{\circ}$	150
3	8 s - 24 s	$1 \le \Delta p/p_0 \le 4$	$\theta \ge 1.5^{\circ}$	240
4	16 s - 16 s	$1 \le \Delta p/p_0 \le 4$	$\theta \ge 1.5^{\circ}$	310
5	16 s - 16 s	$0 \le \Delta p / p_0 \le 4$	$\theta \ge 1.5^{\circ}$	420

References

- 1) K. Sugimoto et al., Phys. Lett. $\mathbf{18},\,38$ (1965).
- 2) K. Asahi et al., Phys. Lett. B **251**, 488 (1990).
- 3) H. Ogawa et al., Phys. Lett. B 451, 11 (1999).
- Y. Ishibashi et al., Nucl. Instrum. Meth. B **317**, 714 (2013).
- 5) A. Gladkov et al., in this report.
- Y. Ichikawa et al., RIKEN Accel. Prog. Rep. 48, 64 (2014).
- N. Yoshida et al., Nucl. Instrum. Meth. B **317**, 705 (2013).

K. Asahi,^{*6} T. Egami,^{*7} C. Funayama,^{*6} T. Kawaguchi,^{*7} S. Kojima,^{*6} L. C. Tao,^{*1,*8} D. Nagae,^{*1}

^{*1} RIKEN Nishina Center