Measurement of multiple isobar chains as a first step toward SHE identification via mass spectrometry[†]

P. Schury,^{*1} M. Wada,^{*1,*2} Y. Ito,^{*2} D. Kaji,^{*2} P.-A. Söderström,^{*2} A. Takamine,^{*2} F. Arai,^{*2,*3} H. Haba,^{*2} S. Jeong,^{*1} S. Kimura,^{*1,*2,*3} H. Koura,^{*4} H. Miyatake,^{*1} K. Morimoto,^{*2} K. Morita,^{*2,*5} A. Ozawa,^{*3} M. Reponen,^{*2} T. Sonoda,^{*2} T. Tanaka,^{*2,*5} and H. Wollnik^{*6}

In the search for the long-predicted "island of stability", the use of so-called hot-fusion reactions has allowed for extending the table of isotopes up to element-118 in recent years. A dearth of projectile-target combinations available for cross-bombardment reactions and α -decay chains terminating in spontaneous fission before reaching well-known nuclei were bottlenecks to acceptance of element-113, -115, -117 and -118¹). As we push ever closer to the island of stability, whether by use of more exotic projectile-target combinations or use of multi-nucleon transfer reactions²), this problem will become ever more severe; we can expect many spontaneously fissioning nuclei, longer α -decay halflives, and a recurrence of β -decay³).

As the first step toward mass spectrographic identification of SHE, we have installed a gas cell connected to an MRTOF-MS⁴⁾ after the gas-filled recoil ion separator GARIS-II⁵⁾. We have used this system to initially perform mass measurements with fusion-evaporation reaction products lighter than uranium, the masses of some of which have not previously been directly measured. In these measurements we demonstrate the ability of the MRTOF-MS to simultaneously measure the masses of atomic (and molecular) ions across multiple isobar chains. With reasonable statistics a highprecision can be achieved, while with less than 10 detected ions the mass can be determined with sufficient precision to identify an ion species.

A 1.5 p μ A beam of ⁴⁰Ar¹¹⁺ at 4.825 MeV/*u* was provided by the RIKEN heavy-ion linear accelerator RILAC. The beam impinged upon a rotating target wheel with 16 target windows. The target wheel comprised 4 windows of ¹⁶⁵₆₇Ho with a thickness of ~0.14 mg/cm² and 12 windows of ¹⁶⁹₆₉Tm with a thickness of ~0.29 mg/cm². The ¹⁶⁵Ho and ¹⁶⁹Tm targets were prepared using sputtering and electro-deposition methods, respectively, on 3 μ m Ti backing foil. A rotating shadow wheel ensured the beam could only impinge on one type of target at a time⁶).

Figure 1 shows the spectrum seen when bombarding

- [†] Condensed from article submitted to Phys. Rev. C http://arxiv.org/abs/1512.00141
- ^{*1} Institute of Particle and Nuclear Studies (IPNS), High Energy Accelerator Research Organization (KEK)
- *² RIKEN Nishina Center
- *³ Institute of Physics, University of Tsukuba
- *4 Advanced Science Research Center, Japan Atomic Energy Agency
- *5 Kyushu University
- *6 New Mexico State University

the ${}^{169}_{69}$ Tm target. We were able to simultaneously observe the 3n and 4n evaporation channels, 205,205 Fr⁺, in a single time-of-flight spectrum. At the same time we could observe lighter isobars, although whether they were decays or xpyn evaporation channels could not be definitively determined.

Fig. 1. Spectrum observed for A/q=201, 205, and 206 species at n=148 laps.

References

- Robert C. Barber, Paul J. Karol, Horimichi Nakahara, Emanuele Vardaci, and Erich W. Vogt, Pure and Applied Chemistry, Vol. 83, No. 7, pp. 1485-1498 (2011)
- 2) J. V. Kratz, M. Schädel, and H. W. Gäggeler, Phys. Rev. C 88 (2013) 054615
- 3) A. V. Karpov, V. I. Zagrebaev, Y. Martinez Palenzuela, L. Felipe Ruiz, Walter Greiner, Int. J. Mod. Phys. E 21 (2012) 1250013
- 4) P.Schury et al., EMIS2015 proceeding, submitted to NIMB
- 5) D. Kaji, K. Morimoto, N. Sato, A. Yoneda, K. Morita, Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 317B (2013) 311-314
- 6) D. Kaji, K. Morimoto, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 792 (2015) 11-14