Different mechanism of two-proton emission from excited states of proton-rich nuclei ²³Al and ²²Mg[†]

Y. G. Ma,^{*1} D. Q. Fang,^{*1} X. Sun,^{*1} P. Zhou,^{*1} Y. Togano,^{*2} N. Aoi,^{*2} H. Baba,^{*2} X. Z. Cai,^{*1} X. G. Cao,^{*1} J. G. Chen,^{*1} Y. Fu,^{*1} W. Guo,^{*1} Y. Hara,^{*3} T. Honda,^{*3} Z. Hu,^{*4} K. Ieki,^{*3} Y. Ishibashi,^{*5} Y. Ito,^{*5} N. Iwasa,^{*6} S. Kanno,^{*2} T. Kawabata,^{*7} H. Kimura,^{*8} Y. Kondo,^{*2} K. Kurita,^{*3} M. Kurokawa,^{*2}
T. Moriguchi,^{*5} H. Murakami,^{*2} H. Ooishi,^{*5} K. Okada,^{*3} S. Ota,^{*7} A. Ozawa,^{*5} H. Sakurai,^{*2} S. Shimoura,^{*7} R. Shioda,^{*3} E. Takeshita,^{*2} S. Takeuchi,^{*2} W. Tian,^{*1} H. Wang,^{*1} J. Wang,^{*4} M. Wang,^{*4} K. Yamada,^{*2} N. Kurokawa,^{*2}

Y. Yamada,^{*3} Y. Yasuda,^{*5} K. Yoneda,^{*2} G. Q. Zhang,^{*1} and T. Motobayashi^{*2}

For proton-rich nuclei, the proton decay mechanism is complicated, especially for two-proton (2p) radioactivity¹⁾. The proton-rich nucleus 23 Al has attracted a lot of attention in recent years since it may play a crucial role in understanding the depletion of the NeNa cycle in $ONe novae^{2}$. The measurement of its reaction cross section and fragment momentum distribution has shown that the valence proton in 23 Al is dominated by the d wave but with an enlarged core³). The spin and parity of the ²³Al ground state was found to be J^{π} = $5/2^{+4}$. Also of great interest is ²²Mg because of its importance in determining the astrophysical reaction rates for 21 Na $(p,\gamma)^{22}$ Mg and 18 Ne $(\alpha,p)^{21}$ Na reactions in the explosive stellar scenarios.

An experiment was performed to study the twoproton decay channels of ²³Al and ²²Mg using the RIPS beamline at the RI Beam Factory (RIBF) operated by RIKEN Nishina Center and Center for Nuclear Study, University of Tokyo.

In this study, we examined the relative momentum spectrum (q_{pp}) and opening angle (θ_{pp}) of the two protons in the three-body decay system for 23 Al and 22 Mg. Without any cut in the excitation energy, a broad q_{pp} spectrum and structure-less θ_{pp} distribution are observed. These results indicate that the main mechanism of two proton emission from ²³Al and ²²Mg are sequential or three-body emission with very weak correlation between the two protons. However, since the decay mode for different excited states or excitation energies is different, it is interesting to check q_{pp} and θ_{pp} spectrum at different excitation energies. For the diproton or ²He emission, a clear peak should appear at small relative momentum as well as opening angle. Fig. 1 show the experimental results of the above two distributions for ²³Al in the excitation energy window 10.5 < E^* < 15 MeV. Evident peaks at $q_{pp} \sim 20$ MeV/c (a) and small opening angle (b) are absent. Instead, the q_{pp} spectrum is broad and the θ_{pp} distribu-

- Condensed from the article in Phys. Lett. B 743, 306 (2015)
- *1Shanghai Institute of Applied Physics, CAS
- *2 **RIKEN** Nishina Center
- *3 Department of Physics, Rikkyo University
- *4Institute of Modern Physics, CAS
- *5 Institute of Physics, University of Tsukuba
- *6 Department of Physics, Tohoku University
- *7Center for Nuclear Study (CNS), University of Tokyo
- *8 Department of Physics, University of Tokyo

Fig. 1. Relative momentum (a) and opening angle (b) distributions between two protons by the decay of ²³Al into two protons plus ²¹Na for $10.5 < E^* < 15$ MeV; (c) and (d) are the results by the decay of 22 Mg into two protons plus ²⁰Ne for $12.5 < E^* < 18$ MeV.

tion is structure-less. Similar analysis has been done in different E^{*} windows other than $10.5 < E^* < 15$ MeV and similar behaviors for q_{pp} and θ_{pp} are observed.

For ²²Mg, Fig. 1 shows the q_{pp} (c) and θ_{pp} (d) data in the excitation energy window $12.5 < E^* < 18$ MeV. The peaks of the q_{pp} distribution at 20 MeV/c and of the corresponding small θ_{pp} are clearly observed. These features are consistent with the diproton emission mechanism. However, no significant enhancements for $q_{pp} \sim 20 \text{ MeV/c}$ and small θ_{pp} are observed for other E^* windows.

In order to quantitatively understand the q_{pp} and θ_{pp} spectra, a Monte Carlo simulation has been performed. A mixture of diproton and simultaneous three-body decay or sequential decay was used to fit the q_{pp} and θ_{pp} data. As shown in the figure, the sequential decay is overwhelmingly dominant for ²³Al. For ²²Mg, on the other hand, the diproton or ²He emission peaks are well reproduced by the simulation. The fraction of the diproton emission is determined to be around 30%.

References

- 1) V. I. Goldansky, Nucl. Phys. 19 (1960) 482.
- 2) V. E. Iacob et al., Phys. Rev. C 74 (2006) 045810.
- 3) D. Q. Fang et al., Phys. Rev. C 76 (2007) 031601(R).
- 4) A. Ozawa et al., *Phys. Rev. C* **74** (2006) 021301(R).