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Gauge symmetry in the large-amplitude collective motion of
superfluid nuclei†

K. Sato ∗1

The adiabatic self-consistent collective coordinate
(ASCC) method2) is a practical method for describing
large-amplitude collective motion in atomic nuclei with
superfluidity and an advanced version of the adiabatic
time-dependent Hartree–Fock–Bogoliubov theory. In
the application of the one-dimensional ASCC method,
Hinohara et al.3) encountered numerical instability and
found that it was caused by the symmetry of the basic
equations of the ASCC method under a certain contin-
uous transformation. This transformation involves the
gauge angle φ and changes the phase of the state vec-
tor. In this sense, Hinohara et al. called it the “gauge”
symmetry. They proposed a gauge-fixing prescription
to remove redundancy associated with the gauge sym-
metry and successfully applied it to the shape coexis-
tence phenomena in proton-rich Se and Kr isotopes.

We investigated this symmetry on the basis of the
Dirac–Bergmann theory of constrained systems4,5). As
is well known, the gauge symmetry is associated with
constraints originating from the singularity of the La-
grangian. In the ASCC method, the linear term of the
particle number n in the collective Hamiltonian can
be regarded as a constraint, and it leads to the gauge
symmetry.

In the ASCC method, we assume the following form
of the state vector.

|ϕ(q, p, φ, n)⟩ = e−iφÑ |ϕ(q, p, n)⟩ = e−iφÑeiĜ|ϕ(q)⟩,

with Ĝ(q, p, n) = pQ̂(q) + nΘ̂(q) and Ñ = N̂ − N0.
φ is the gauge angle conjugate to the particle number
n = N −N0 measured from a reference value N0. The
collective Hamiltonian is defined and expanded up to
O(n) as below.

H(q, p, n) := ⟨ϕ(q, p, φ, n)|Ĥ|ϕ(q, p, φ, n)⟩

= V (q) +
1

2
B(q)p2 + λn. (1)

This can be regarded as a system with the constraint
n = 0, and λ is a Lagrange multiplier.
In Lagrange formalism, the Lagrangian correspond-

ing to this (total) Hamiltonian is given by

L =
1

2B(q1)
(q̇1)2 − V (q1, q2), (2)

with (q1, q2) := (q, φ), and the rank of the Hessian
(∂2L/∂q̇i∂q̇j) is one. (We allowed the potential V to
depend on q2 = φ in order to make it easy to observe
the number of the degrees of freedom.) Hence, this
Lagrangian leads to one constraint, p2 = ∂L

∂q̇2 = n = 0.
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The time derivative of the constraint is given by ṅ =
{n,H} = −∂φV . Thus, the constraint is preserved
in time if V (q, φ) = V (q). Then, we have only one
constraint n = 0, and it is a first-class constraint. From
the above, it is clear that our system has one gauge
degree of freedom.

It is known that a generator of a gauge transforma-
tion can always be written as a “linear combination” of
the first-class constraints. We can write the generator
G as G = ϵ(q, p, φ, n, t)n with an infinitesimal function
ϵ. This generator gives the gauge transformation of
collective variables.

δq = n∂pϵ ≈ 0, δp = −n∂qϵ ≈ 0, (3)

δφ = ϵ+ n∂nϵ ≈ ϵ, δn = −n∂φϵ ≈ 0. (4)

Here, the symbol ≈ denotes weak equality. As ϵ is an
arbitrary function of (q, p, φ, n, t), in particular, of p,
the linear and higher-order terms of p are mixed only
into φ by this gauge transformation. This is important
for the adiabatic expansion in the ASCC method to
make sense.

With the choice ϵ = αpn, we obtain

δq = αn, δp = 0, δφ = αp, δn = 0, (5)

which leads to the transformation of operators,

Q̂ → Q̂+ αÑ, Θ̂ → Θ̂ + αP̂ . (6)

This is exactly the transformation found in Ref. 3),
and thus, we confirmed that the symmetry discussed
in Ref. 3) is a gauge symmetry.

In Ref. 1), the most general gauge transformation is
discussed. While the equation of collective subman-
ifold, from which the basic equations of the ASCC
method (the moving-frame HFB & QRPA equations)
are derived, is invariant under the most general gauge
transformation, the gauge symmetry is partially bro-
ken by the adiabatic expansion at the level of the
moving-frame HFB & QRPA equations. Above, we
have considered the expansion of the collective Hamil-
tonian up to O(n). In Ref. 1), it is also shown that
there is no gauge symmetry in the case where the col-
lective Hamiltonian is expanded up to O(n2).
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