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Excited states above the Hoyle state

Y. Funaki∗1

In 12C, there exists besides the Hoyle state (the sec-
ond 0+ state of 12C) a number of other α gas states
above the Hoyle state that one can qualify as excited
states of the Hoyle state. For a description of those
states, it is useful to adopt a generalized THSR wave
function1), as the so-called THSR wave function2,3) is
known to be the best to describe the Hoyle state4).
The part of the 3α THSR wave function that contains
the c.o.m. motion of the α particles contains two Ja-
cobi coordinates ξ1 and ξ2. As a natural extension of
the original THSR wave function, it is possible to as-
sociate two different width parameters B1, B2 with the
two Jacobi coordinates. In this case the translationally
invariant THSR wave function has the following form:

Ψthsr
3α = A

[
exp

(
− 4

3B2
1

ξ21 −
1

B2
2

ξ22

)
φ1φ2φ3

]
. (1)

With this type of generalized THSR wave function, one
can get a much richer spectrum of 12C. Axial symmetry
has been assumed and the four B parameters are taken
as Hill-Wheeler coordinates. In Fig. 1, the calculated
energy spectrum is shown. One can see that besides
the ground state band, there are many Jπ states ob-
tained above the Hoyle state. All these states turn
out to have large rms radii (3.7 ∼ 4.7 fm), and there-
fore can be considered as excitations of the Hoyle state.
The Hoyle state can thus be considered as the “ground
state” of a new class of excited states in 12C. In par-
ticular, the nature of the series of states (0+2 , 2

+
2 , 4

+
2 )

and the 0+3 and 0+4 states have recently been widely
discussed from the experimental side5–9).
In Fig. 1, the E2 transition strengths between J

and J ± 2 states and monopole transitions between 0+

states are shown with corresponding arrows. We note
the very strong E2 transitions inside the Hoyle band,
B(E2; 4+2 → 2+2 ) = 591 e2fm4 and B(E2; 2+2 → 0+2 )
= 295 e2fm4. The transition between the 2+2 and 0+3
states is also very large, B(E2; 2+2 → 0+3 ) = 104 e2fm4.
There have been attempts to interpret the Hoyle band
as a rotational band of a spinning triangle as this was
successfully done for the ground state band10). How-
ever, the situation may not be as straightforward as
it seems11). Since the two transitions 2+2 → 0+2 and
2+2 → 0+3 are of similar magnitude, no clear band head
can be identified. Whether they can be qualified as
members of a rotational band or of a vibrational band
or a mixture of both is an open question. One should
also realize that the 0+3 state is strongly excited from
the Hoyle state by monopole transition whose strength
is obtained from the extended THSR calculation to be
M(E0; 0+3 → 0+2 ) = 35 fm2. Therefore, the 0+3 state
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Fig. 1. Spectrum of 12C obtained from the extended THSR

approach in comparison with experiment.

seems to be a state where one α particle has been lifted
out of the condensate to the next higher S level with a
node. This is confirmed by the S2 factor, which is cal-
culted to be close to unity for the 12C(0+1 )+α(S) chan-
nel. We can also conclude that the 2+3 and 4+3 states,
together with the 0+3 state, form the higher nodal rota-
tional band, from the Reduced Width Amplitude anal-
ysis. On the other hand, the 0+4 , 2

+
4 and 4+4 states all

have the largest contribution from the 8Be(2+)+α(D)
channel, indicating that these states are built out of an
α particle orbiting in a D-wave around a (correlated)
two α pair, also in a relative 0D state.
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