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Effects of thermal shape fluctuations and pairing fluctuations on the

giant dipole resonance in warm nuclei†

A.K. Rhine Kumar,∗1 P. Arumugam,∗1 and N. Dinh Dang∗2

The study of giant dipole resonance (GDR) at high
temperature (T ) and angular momentum (J) has been
an interesting area of research, which has revealed sev-
eral structural properties of nuclei at extreme condi-
tions. Being a fundamental mode of photo excitation,
GDR can probe nuclei at extreme conditions and even
those with exotic structures. Since the nucleus is a
tiny system, the thermal fluctuations inherent in finite
systems are expected to be large. The shape degrees
of freedom being crucial for nuclear structure, the de-
formation parameters are closely associated with the
order parameters for the related transitions. Hence the
thermal shape fluctuations (TSF) are the most domi-
nant ones, and at low T the fluctuations in the pairing
field can also contribute significantly. Many models
have been used to study the effect of both these fluc-
tuations separately, but the combined effect of these
two was not investigated until our recent efforts.

In our recent work1), we have outlined some of our
results from a theoretical approach for such warm
nuclei where all these effects are incorporated along
within the thermal shape fluctuation model (TSFM)
extended to include the fluctuations in the pairing
field. In this article, we present the complete formalism
based on the microscopic-macroscopic approach for de-
termining the deformation energies and a macroscopic
approach which links the deformation to GDR observ-
ables. The TSFM built on Nilsson-Strutinsky calcula-
tions with a macroscopic approach to GDR was em-
ployed. The nuclear shapes are related to the GDR
observables using the Hamiltonian written in terms
of the dipole operator D and pairing operator P as
H = Hosc+η D†D +χ P †P , whereHosc stands for the
anisotropic harmonic oscillator hamiltonian, the pa-
rameter η characterizes the isovector component of the
neutron and proton average field and χ is the strength
of the pairing interaction. The pairing interaction
changes the oscillator frequencies [ωosc

ν (ν = x, y, z)] to
ων = ωosc

ν − χωP , where ωP = [(Z∆P +N∆N )/(Z +
N)]2 with χ having the units of MeV−1. Pairing renor-
malizes the dipole-dipole interaction strength to η =
η0 − χ0

√
TωP , with χ0 having the units of MeV−5/2.

The T -independent parameters η0 and χ0 are chosen
to reproduce the GDR width at T = 0 and to obtain
the overall agreement with the experimental widths at
T �= 0. The effective GDR cross-sections is calculated
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Fig. 1. The GDR strength functions for 97Tc at different

T are compared with the results obtained by using the

pairing fluctuations (PF) within a grand canonical en-

semble approach (GCE). Experimental data are shown

by solid circles. The legend PF (GCE)* denotes that

the calculations are with the parameter δ = 1.9; in all

other calculations δ =1.8.

by averaging all the cross-sections σ(Eγ , β, γ.∆P ,∆N )
obtained from thermal fluctuations of quadrupole
shapes by using the formula for the expectation
value of an observable O as �O�β,γ,∆P ,∆N

=∫
OW (T, β, γ,∆P ,∆N )D[α]/

∫
W (T, β, γ,∆P ,∆N )D[α]

withW (T, β, γ,∆P ,∆N ) = exp[−F (T ;β, γ,∆P ,∆N )/T ],
D[α] = β4| sin 3γ| dβ dγ d∆P d∆N . The total free en-
ergy (FTOT ) at a fixed deformation is calculated using
the expression FTOT = ELDM +

∑
p,n δF . Each cross

section σ(Eγ , β, γ.∆P ,∆N ) is a sum of the Lorentzians,
whose widths are given as Γi = Γ0(Ei/E0)

δ with Γ0

and E0 being the width and energy in the case of a
spherical nucleus, respectively. The energy predicted
by the liquid drop model (LDM) is calculated by sum-
ming up the Coulomb and surface energies correspond-
ing to a triaxially deformed shape defined by the de-
formation parameters β and γ.
We discussed our results for the nuclei 97Tc, 120Sn,

179Au, and 208Pb, and corroborated with the exper-
imental data available. The TSFM could explain
the data successfully at low temperature only with a
proper treatment of pairing and its fluctuations (Fig.
1). More measurements with better precision could
yield rich information about several phase transitions
that can happen in warm nuclei.
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Stability of the wobbling motion in an odd-A nucleus†

K. Tanabe∗1,∗2 and K. Sugawara-Tanabe∗1,∗3

Recently, the transverse wobbling mode was pro-
posed in the yrast band near the ground state before
the first backbending in 135Pr1). The transverse wob-
bling mode is the wobbling motion around the middle
moment of inertia (MoI)2), which does not exist in the
pure rotor as discussed in the context of classical me-
chanics3) and by Bohr-Mottelson4) quantum mechan-
ically. Regarding the particle-rotor model, as long as
the rigid MoI is adopted, there is no chance to find
transverse wobbling, because the single-particle oscil-
lator strength ωk and the rigid MoI are derived from
a common radius, and their magnitudes increase or
decrease in the same direction as functions of γ pe-
riodically with a span of 2π/3. On the other hand,
the hydrodynamical (hyd) MoI changes its role in ev-
ery span of π/3 in an opposite direction to ωk. Thus,
there remains a possibility to find the transverse wob-
bling mode for the particle-rotor model with hyd MoI.
We extend the Holstein-Primakoff (HP) boson ex-

pansion method to the odd-A case5–8) by introducing
two kinds of bosons for the total angular momentum
�I and the single-particle angular momentum �j. We
can identify the nature of each band by referring to
two kinds of quantum numbers (nα, nβ) which indicate

the wobbling of �I and the precession of �j, respectively.
In this paper we extend this method to the particle-
rotor model with hyd MoI. We choose a representa-
tion in which Iy and jx are diagonal because the hyd
MoI is maximum around the y-axis with the relation
J hyd
y ≥ J hyd

x ≥ J hyd
z in the range of 0 ≤ γ ≤ π/6,

while ωk favors �j to align along the x-axis in the same
range of γ. We notice that, if we choose the diagonal
representation for �I and �j in the same direction, we
cannot find any stable physical solution for common
values of γ and V (the strength of the single-particle
potential5–8)) in the range of 11/2≤ I ≤33/2. We solve
the energy-eigenvalue equation to obtain two real so-
lutions, i.e., ω+, which is the higher energy, and ω−,
which is the smaller one. In the symmetric limit of
γ = 30◦ and V = 0, ω+ corresponds to the wobbling
motion around the y-axis with the maximum MoI,
while ω− corresponds to the precession of j around
the x-axis.
We adopt j =11/2, J0 =25 MeV−1 ( J hyd

k =
4
3J0 sin

2
(
γ + 2

3πk
)
), β =0.18 and γ =26◦ (proposed

by Ref.1)), and V = 1.6 MeV (related to the single-
particle strength with these β, γ and j by Wigner-
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Fig. 1. Comparison of the excitation energy in the leading

order approximation5) with the exact results as func-

tions of I . The solid lines correspond to I − j =even,

the red dashed lines to I− j =odd, and the dotted blue

lines to the exact results. The attached numerals (0,1)

and (0,0) correspond to quantum numbers of (nα, nβ).

Eckart theorem)8). In Fig. 1 we compare the energies
labeled by (nα, nβ)= (0,1) and (0,0) with the exact
ones obtained by diagonalizing the same Hamiltonian.
The exact levels are reproduced by the approximate
ones labeled (0,1), the precession mode of j, irrespec-
tive of I − j. Both ω+ and ω− monotonically increase
with I, and never decrease.
In conclusion, there is no transverse wobbling mode

within the framework of the particle-rotor model even
with the hyd MoI.
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