Stability of the wobbling motion in an odd-A nucleus[†]

K. Tanabe^{*1,*2} and K. Sugawara-Tanabe^{*1,*3}

Recently, the transverse wobbling mode was proposed in the vrast band near the ground state before the first backbending in $^{135}Pr^{1}$. The transverse wobbling mode is the wobbling motion around the middle moment of inertia $(MoI)^{2}$, which does not exist in the pure rotor as discussed in the context of classical mechanics³⁾ and by Bohr-Mottelson⁴⁾ quantum mechanically. Regarding the particle-rotor model, as long as the rigid MoI is adopted, there is no chance to find transverse wobbling, because the single-particle oscillator strength ω_k and the rigid MoI are derived from a common radius, and their magnitudes increase or decrease in the same direction as functions of γ periodically with a span of $2\pi/3$. On the other hand, the hydrodynamical (hyd) MoI changes its role in every span of $\pi/3$ in an opposite direction to ω_k . Thus, there remains a possibility to find the transverse wobbling mode for the particle-rotor model with hyd MoI.

We extend the Holstein-Primakoff (HP) boson expansion method to the odd-A $case^{5-8}$ by introducing two kinds of bosons for the total angular momentum \vec{I} and the single-particle angular momentum \vec{j} . We can identify the nature of each band by referring to two kinds of quantum numbers (n_{α}, n_{β}) which indicate the wobbling of \vec{I} and the precession of \vec{j} , respectively. In this paper we extend this method to the particlerotor model with hyd MoI. We choose a representation in which I_y and j_x are diagonal because the hyd MoI is maximum around the y-axis with the relation $\mathcal{J}_{y}^{\text{hyd}} \geq \mathcal{J}_{x}^{\text{hyd}} \geq \mathcal{J}_{z}^{\text{hyd}}$ in the range of $0 \leq \gamma \leq \pi/6$, while ω_k favors \vec{j} to align along the x-axis in the same range of γ . We notice that, if we choose the diagonal representation for \vec{I} and \vec{j} in the same direction, we cannot find any stable physical solution for common values of γ and V (the strength of the single-particle potential⁵⁻⁸⁾) in the range of $11/2 \le I \le 33/2$. We solve the energy-eigenvalue equation to obtain two real solutions, i.e., ω_+ , which is the higher energy, and ω_- , which is the smaller one. In the symmetric limit of $\gamma = 30^{\circ}$ and V = 0, ω_{+} corresponds to the wobbling motion around the y-axis with the maximum MoI, while ω_{-} corresponds to the precession of *j* around the *x*-axis.

We adopt j = 11/2, $\mathcal{J}_0 = 25 \text{ MeV}^{-1}$ ($\mathcal{J}_k^{\text{hyd}} = \frac{4}{3}\mathcal{J}_0 \sin^2(\gamma + \frac{2}{3}\pi k)$), $\beta = 0.18$ and $\gamma = 26^{\circ}$ (proposed by Ref.¹⁾), and V = 1.6 MeV (related to the singleparticle strength with these β , γ and j by Wigner-

1 0 E(MeV) -1 exact (0,1).2 (0,0) 0 5 10 15 I

Fig. 1. Comparison of the excitation energy in the leading order approximation⁵⁾ with the exact results as functions of *I*. The solid lines correspond to I - j =even, the red dashed lines to I - j = odd, and the dotted blue lines to the exact results. The attached numerals (0,1)and (0,0) correspond to quantum numbers of (n_{α}, n_{β}) .

Eckart theorem)⁸). In Fig. 1 we compare the energies labeled by $(n_{\alpha}, n_{\beta}) = (0,1)$ and (0,0) with the exact ones obtained by diagonalizing the same Hamiltonian. The exact levels are reproduced by the approximate ones labeled (0,1), the precession mode of j, irrespective of I - j. Both ω_+ and ω_- monotonically increase with I, and never decrease.

In conclusion, there is no transverse wobbling mode within the framework of the particle-rotor model even with the hyd MoI.

References

- 1) J. T. Matta et al., Phys. Rev. Lett. 114, 082501 (2015).
- 2) S. Frauendorf, F. Dönau, Phys. Rev. C 89, 014322 (2014).
- 3) L. D. Landau, E. M. Lifshitz: Mechanics (Physics-Mathematics Institute, Moskow, 1958), Sect. 37.
- 4) A. Bohr, B. R. Mottelson: Nuclear Structure (Benjamin, Reading, MA, 1975), Vol. II.
- 5) K. Tanabe, K. Sugawara-Tanabe, Phys. Rev. C 73, 034305 (2006).
- 6) K. Tanabe, K. Sugawara-Tanabe, Phys. Rev. C 77, 064318 (2008).
- 7) K. Sugawara-Tanabe, K. Tanabe, Phys. Rev. C 82, 051303(R) (2010).
- 8) K. Sugawara-Tanabe, K. Tanabe, N. Yoshinaga, Prog. Theor. Exp. Phys. 2014, 063D01 (2014).

Condensed from the article at the autumn meeting of Japan Physical Society, Osaka City University, Sept. 27th (2015) *1

RIKEN Nishina Center

^{*2} Department of Physics, Saitama University

^{*3} Otsuma Women's University