Two-Proton Radioactivity of 67Kr†

β decay is the predominant decay mode in proton-rich nuclei close to stability, but further away from stability valley the binding energy of excess protons decreases and β-delayed proton emission becomes more likely. When the one or two-proton separation energies S_p and S_{p^2} become negative, the dripline is reached and one- or two-proton emission from the ground state for odd- and even-Z elements, respectively, competes with β decay.

Two-proton (2p) radioactivity is a unique tool to study nuclear structure beyond the proton dripline. Predicted in 1960, 1) this direct emission of two protons was discovered in 2002 in the decay of 45Fe. 2,3) The other known medium-mass cases 58Ni4) and 54Zn5) were discovered in the same decade.

According to mass predictions, the heavier nuclei 59Ge, 63Se and 67Kr are candidates for 2p emission. They were successfully produced and identified during the 78Kr beam campaign in 2015 6) at RIBF. 63Se and 67Kr were observed for the first time and 59Ge for the second.

The nuclei of interest 7) were implanted in WAS3ABi, a set of three DSSDs to measure the energy of β particles and protons. The vertical and horizontal strips allowed ion-decay position correlations, greatly reducing the background in the energy spectra. WAS3ABi was surrounded by the EURICA γ-ray array. 8)

No 2p evidence was found for 59Ge and 63Se. Fig. 1(a) and (c) do not show any peak without coincident β detection. However, the 67Kr spectrum (e) shows a clear peak at 1690(17) keV originating from 2p radioactivity without any coincident β particle or 511-keV γ ray. A 2p branching ratio of 37(14)% and a half-life of 7.4(30) ms were found, leading to a 2p partial half-life of 20(11) ms, in strong disagreement with the three-body half-lives 9) for different ℓ̂ configurations.

References