Spin Physics in RHICf Experiment

J.S. Park^{*1,*2} for RHICf collaboration

Transverse single spin asymmetry (A_N) is defined as

$$A_N = \frac{\sigma^{\uparrow} - \sigma^{\downarrow}}{\sigma^{\uparrow} + \sigma^{\downarrow}} \tag{1}$$

where \uparrow and \downarrow denote up and down spins, respectively, of the incident beam. Since the discovery of an unexpectelly large A_N in 1991 from the E704 experiment.¹⁾ A_N values measured from subsequent ex $periments^{2-4}$ have provided important information to expand QCD application. When we categorize QCD into perturbative QCD (pQCD) and non-perturbative QCD (non-pQCD) according to Q^2 , the A_N in the pQCD region can be explained by two kinds of theoretical framworks: twist-3 perturbative QCD and the transverse-momentum-dependent parton distribution function. On the other hand, no general physical framework to calculate A_N in the region of non-pQCD exists. In the case of the inclusive neutron production process, however, A_N can be calculated by the spinflip one pion exchange (OPE) model and spin-non-flip Reggeon exchange model.⁵)

At the Relativistic Heavy Ion Collider (RHIC), the first polarized proton-proton collider, A_N measurement with forward neutrons (8.8> η >6.9) at \sqrt{s} =62 GeV, 200 GeV and 500 GeV has been performed.^{6,7}) These data have played an important role in testing the explanation based on the OPE model and Regge theory. Nevertheless, more A_N measurements of neutrons with high pseudorapidity and with higher pT are needed for a better understanding of the mechanism in inclusive neutron production and clarification of the relation among A_N , P_T and \sqrt{s} .

In the RHICf experiment, we will measure very forward neutral particles ($\eta > 6.9$) by using STAR ZDC and the RHICf detector. ZDC is a sampling type hadron calorimeter that has an energy resolution of 20% for 100 GeV neutrons with a position resolution of 1 cm. The RHICf detector is a sampling type EM calorimeter that has an energy resolution of 40% for 350GeV neutrons with a position resolution of 1 mm.⁸)

In addition to the improvement of the position resolution of ZDC and the RHICf detector, we are planning to manipulate the position of the RHICf detector vertically as shown Fig. 1 and use a radial polarized beam during the dedicated beam time for the RHICf experiment.⁹⁾ These works will allow more precise measurement and higher p_T (up to 1.5 GeV/C) data. Another challenge in the RHICf experiment is the measurement of A_N with forward π^0 ; the RHICf detector consists of 2 towers for reconstruction from the detection of 2γ .

^{*1} Department of Physics and Astronomy, Seoul National University

Fig. 1. Various positions of the RHICf detector. The black cross indicates the beam center.

Fig. 2. Relationship between A_N of forward neutrons and pT at various collision energies. Red eclipses show the results expected from RHICf experiment.

References

- D. L. Adams, et al., Fermilab E704 Collaboration, Nucl. Phys. B 510 3 (1998).
- S. S. Adler, et al., PHENIX Collaboration, Phys. Rev. Lett. 95 202001 (2005).
- A. Airapetian, et al., HERMES Collaboration, Phys. Rev. D 64 097101 (2001).
- V. Y. Alexakhin, et al., COMPASS Collaboration, Phys. Rev. Lett. 94 202002 (2005).
- B. Kopeliovich, et al., Physical Review D 84 114012 (2011).
- 6) Y. Fukao et al., Phys. Lett. B 650, 325 (2007).
- A. Adare et al., PHENIX Collaboration, Physical Review D 88 032006 (2013).
- 8) M. H. Kim for the RHICf Collaboration: In this report.
- 9) Y. Goto for the RHICf Collaboration. RIKEN Accel. Prog. Rep. 48. (2015).