Clear indication of a strong I=0 $\bar{K}N$ attraction in the $\Lambda(1405)$ region from the CLAS photo-production data

M. Hassanvand,^{*1,*2} Y. Akaishi,^{*2} and T. Yamazaki^{*2,*3}

The possible existence of deeply bound kaonic nuclear systems was proposed¹⁾ more than a decade ago, based on an ansatz that $\Lambda^* \equiv \Lambda(1405)$ mass is 1405 MeV/ c^2 , where Λ^* is a $\bar{K}N$ quasi-bound state decaying to $\Sigma\pi$. Recently, a large number of data on the photo-production of $\Lambda(1405)$ in the $\gamma p \to K^+ \pi^{0\pm} \Sigma^{0\mp}$ reaction were provided by the CLAS collaboration²⁾, and the double-pole structure of Λ^* has been intensively discussed by chiral dynamics analyses³⁻⁵⁾.

Fig. 1. Analyses of a $\Sigma^0 \pi^0$ invariant mass spectrum from CLAS. Mai-Meissner's analysis (brown) with chiral theory and Hassanvand-Akaishi-Yamazaki's analysis (black and blue) are compared.

We have analyzed the CLAS data. Figure 1 compares two CLAS-data analyses. The most essential question is what the pole position of Λ^* extracted from the CLAS data themselves is. To answer it, we classified χ^2 fitting parameters into "inner" and "outer" ones, where the "inner" indicates the parameters appearing inside the T-matrix which can vary the pole position and width of Λ^* . The double pole positions recommended in Ref.⁵⁾ are cases selected using only "outer" parameters, holding the pole position unchanged in χ^2 fitting processes. Therefore, the chiral pole position in Ref.⁴⁾, for example, gets no confidence from the CLAS data. On the other hand, we used the Λ^* pole position and width as fitting parameters and found the χ^2 minimum at 1405.5 MeV/ c^2 , rejecting the chiral result with more than 99% statistical significance.

Fig. 2. Variation of χ^2 values with respect to Λ^* pole position parameter M for the $\Sigma^0 \pi^0$ invariant mass spectra at γp total energies, W = 2.0 - 2.8 GeV, from CLAS. The χ^2 minimum appears around 1400 MeV/ c^2 .

Figure 2 shows the variation of χ^2 values with respect to the Λ^* pole position for all the $\Sigma^0 \pi^0$ invariant mass data from CLAS. The χ^2 minimum $\chi^2_{\min}(M = M_{\text{pole}})$ appears around $M_{\text{pole}} = 1400 \text{ MeV}/c^2$ in all cases. Statistical confidence of the Λ^* pole position M_{pole} can be obtained incrementing $\Delta \chi^2(M) \equiv \chi^2(M) - \chi^2_{\min}(M_{\text{pole}})$: $\Delta \chi^2 = 2.36, 4.74, 9.23$, corresponding to confidence levels of 68.3%, 95% and 99.9%, respectively. Thus, the confidence of the Λ^* pole position, that is of our main concern, was obtained through the "inner" fitting parameters. It is again stressed that the "outer" parameters used in Ref.⁴⁾ (see also Table in Ref.⁵⁾) cannot get any quantitative confidence about the Λ^* pole position, in spite of the seemingly beautiful reproduction of all the global neutral and charged spectra of CLAS.

In summary, the pole position for $\Lambda(1405)$ extracted from the CLAS photo-production is not shallow- $\bar{K}N$ binding ones, 1421 ~ 1434 MeV/ c^{2-5} , but is consistent with the deep- $\bar{K}N$ -binding PDG value 1405.1^{+1.3}_{-1.0} MeV/ c^{2} .

References

- Y. Akaishi, T. Yamazaki, Phys. Rev. C 65 (2002) 044005.
- 2) K. Moriya et al., Phys. Rev. C 87 (2013) 035206.
- 3) L. Roca, E. Oset, Phys. Rev. C 87 (2013) 055201.
- 4) M. Mai, U.-G. Meissner, Eur. Phys. J. A 51 (2015) 30.
- U.-G. Meissner, T. Hyodo, Chin. Phys. C 38 (2014) 090001 and 2015 update.

 $^{^{*3}}$ Department of Physics, University of Tokyo