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Light scalar resonance from lattice simulation of SU(3) gauge theory
with eight light fermions†
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Studying the properties of strongly-coupled gauge
theories with a large number of fermions has been an
area of active research using lattice gauge theory tech-
niques in recent years1). The screening of the gauge
force by the presence of N

f
light fermions is known to

trigger a phase transition asN
f
increases, with confine-

ment and chiral symmetry breaking disappearing as
the theory becomes scale invariant at long distances.
Near the transition, such a theory can be confining
(and therefore a useful candidate for the construction
of composite Higgs models), but exhibit novel dynam-
ical features associated with the onset of scale invari-
ance.

Lattice gauge theory provides an ideal method to
study these non-perturbative theories numerically. We
consider an SU(3) gauge theory with N

f
= 8 degen-

erate light fermions, charged under the fundamental
representation. An earlier study of this same theory
by the LatKMI collaboration2) revealed evidence for a
very light scalar resonance with JPC = 0++ quantum
numbers. This is qualitatively different from QCD,
where the lightest scalar resonance is heavy enough to
decay into two pions.

Our lattice simulations are carried out with an
nHYP-smeared staggered fermion action, and a pla-
quette gauge action which includes an adjoint plaque-
tte term to reduce lattice artifacts associated with
a lattice phase transition3). We use standard lat-
tice spectroscopy techniques to calculate the resonance
masses and decay constants. For the 0++ meson state,
the fermion-line-disconnected contribution to the two-
point correlation function is important, for which we
employ the method of dilution with U(1) stochastic
sources. We simulate the theory at relatively light
fermion masses, with the ratio M

ρ
/M

π
≈ 2.1 at our

lightest point shown, requiring a 643× 128 lattice vol-
ume in order to control finite-volume systematic ef-
fects.

One of the main results of our simulation is shown
in figure 1, which gives the resonance masses as a
function of the input fermion mass am. Over a wide
range of input masses, the 0++ resonance is seen to
be nearly degenerate with the pion, and both reso-
nances are becoming light compared to the ρ and other
heavier states seen in the spectrum. This confirms the
LatKMI result2) and demonstrates that the degeneracy
between the 0++ and π states persists even to rather
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Fig. 1. Spectrum of the SU(3) N
f

= 8 theory in lattice

units, obtained from our simulations. The states shown

are the lightest resonance in the pseudoscalar (π), scalar

(0++), vector (ρ), axial vector (a1), and nucleon (N)

channels. Error bars are shown for all results, but are

often smaller than the size of the symbols used. The

0++ and π states are seen to be near-degenerate over

a wide range of input fermion masses am and well-

separated from the rest of the spectrum.

light fermion masses, approaching the chiral limit of
the theory.

The separation of the 0++ and π states relative to
the rest of the spectrum, which stands in stark con-
trast to the familiar case of QCD, raises the question
of whether there is an effective field theory (EFT) con-
taining both the 0++ and π degrees of freedom which
can describe the low-energy dynamics of the N

f
= 8

system. Identifying a novel EFT that contains a light
scalar degree of freedom could provide a completely
new approach to the construction of composite Higgs
models, and might help to deepen our understanding
of the confining-conformal transition in many-fermion
gauge theories as well. As a next step in our study
of this theory, lattice calculations of π − π scattering
are now underway, which will help to distinguish the
possible EFT descriptions of this intriguing system.
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