Mg ion pumping effect during $^{24}\text{Mg}^{8+}$ ion beam production at the Hyper-ECR ion source

H. Muto,*¹ M. Kase,*¹ K. Kobayashi,*² M. Nishimura,*² S. Kubono,*¹
Y. Ohshiro,*³ Y. Kotaka,*¹ H. Yamaguchi,*³ Y. Sakemi,*³ and S. Shimoura*³

A grating monochromator with a photomultiplier has been used for beam tuning at the Center for Nuclear Study Hyper-Electron Cyclotron Resonance (ECR) ion source.¹,² The Hyper-ECR ion source has been successfully used as an injector of the multi-charged ion beams of high intensity for the RIKEN AVF cyclotron.³ $^{24}\text{Mg}^{8+}$ ions have been produced in the 14.2-GHz Hyper-ECR ion source. At the beginning of the chamber baking an RF power of 100 W was fed to the residual gas of the plasma chamber. The extraction voltage was set to 10 kV. Then the vacuum gauge reading rapidly dropped to less than 10^{-4} Pa from the order of 10^{-5} Pa and a brakedown of the high-voltage power supply occurred because of the huge drain current. A few hours later the extraction voltage was recovered and the vacuum gauge reading was restored to the order of 10^{-5} Pa. The RF power was gradually increased to 600 W until a good vacuum condition ($1\sim5 \times 10^{-5}$ Pa) and low drain current of less than 2 mA were obtained. After baking the plasma chamber an MgO rod was gradually inserted into the chamber without excessive heat. The RF power ranges from 500 to 600 W for $^{24}\text{Mg}^{8+}$ ion production. A grating monochromator (JASCO CT-25C) and a photomultiplier (Photosensor module H11462-031, Hamamatsu Photonics) were used for light intensity observation during chamber baking and beam operation.³ The wavelengths of the observed lines were determined in accordance with the NIST Atomic Spectra Database.⁴ Figure 1 shows the optical line spectrum of the Hyper-ECR ion source under plasma chamber baking. This spectrum was taken three hours from baking start. The vacuum gauge reading was 5.7×10^{-5} Pa. The drain current was 12 mA. The RF power was 100 W. In this figure most of the peaks were from Fe I and Fe II. The relative intensities of those Fe I and Fe II peaks are quite high. Figure 2 shows an optical line spectrum of the ECR plasma during $^{24}\text{Mg}^{8+}$ ion beam tuning. The vacuum gauge reading was 1.7×10^{-5} Pa. The drain current was 1.8 mA. The RF power was 611 W. The line intensities of Fe I and Fe II almost decreased to zero and Mg line intensities appeared. Especially, the Mg VIII line spectrum ($\lambda=279.64$ nm) was clearly obtained to identify the existence of $^{24}\text{Mg}^{8+}$ ions in the ECR plasma. The ion source was tuned for the production of the $^{24}\text{Mg}^{8+}$ ions. The H⁺ ions were also reduced during $^{24}\text{Mg}^{8+}$ ion beam operation. From these results the ion pumping effect of Mg ions was visually demonstrated by the optical grating monochromator with a photomultiplier.

References
4) www.nist.gov/pml/data/asd.cfm for NIST atomic spectrum data base.