μSR investigation of a quantum criticality in the coupled spin ladder $Ba_2 CuTeO_6$

Y. S. Choi, *1 S.-H. Do, *1 Dita Puspita Sari, *2, *3 I. Watanabe, *2 and K.-Y. Choi*1, *2

Quantum spin ladders consisting of leg and rung couplings offer an outstanding opportunity to investigate quantum-critical spin dynamics and have far-reaching relevance to diverse fields of physics such as Tomonaga-Luttinger liquids, magnon fractionalization, unconventional superconductivity, and quark confinement.¹⁾⁻³⁾ Isolated two-leg ladders have a short-range resonating valence bond state.⁴⁾ With growing interladder couplings, a quantum phase transition is anticipated to occur to the magnetically ordered state.⁵⁾

Ba₂CuTeO₆ is a prime candidate material for a three-dimensionally networked spin ladder, allowing addressing quantum criticality in coupled two-leg ladders. Ba₂CuTeO₆ features both a long-range ordering at $T_{\rm N}$ =15 K and the spin-gap excitation of Δ =50 K at finite temperatures.⁶⁾⁻⁷⁾ However, the magnetic transition is largely hidden, while showing no magnetic Bragg peaks and no apparent λ -like anomaly in the specific heat. Thus, it is highly desired to identify the occurrence of the static magnetic ordering. To resolve these issues, we performed zero-field μ SR experiments on the ARGUS spectrometer of RIKEN-RAL. The collected data were analyzed using the software package WiMDA.

Fig. 1. (a) Representative data of the muon polarization of Ba₂CuTeO₆ measured above and below T_N . The solid lines are fits described in the text. The inset zooms the early-time behavior at various temperatures. The spectra are vertically shifted. (b),(c),(d) The asymmetry, the muon spin precession frequency f_{μ} , and the transverse relaxation rate λ_T as a function of temperature. The vertical bar indicates the onset of magnetic ordering at $T_N = 14.1$ K.

- *2 RIKEN Nishina Center
- *3 Department of Physics, Osaka University

The time decay of the muon spin polarization P(t) at temperatures above and below T_N is shown in Fig. 1(a). Upon cooling towards T_N , we observe muon-spin precession together with a drop in the early-time asymmetry [see the inset of Fig. 1(a)], confirming the development of static local magnetic fields at the muon stopping sites. The polarization curves can be well described by the sum of an exponentially relaxing cosine function and a simple exponential function:

 $P(t) = (1 - \alpha) \exp(-\lambda_{\rm L} t) + \alpha \exp(-\lambda_{\rm T} t) \cos(2\pi f_{\mu} t + \phi),$

where the two terms represent muons polarized transverse and parallel to the local magnetic fields. The temperature dependence of the asymmetry, the muon-spin precession frequency f_{μ} and the transverse relaxation rate $\lambda_{\rm T}$ is plotted in Fig. 1(b)-(d). All μ SR parameters display distinct changes at $T_{\rm N}$. The initial asymmetry drops rapidly on cooling to $T_{\rm N}$. The missing asymmetry is ascribed to an unresolved precession signal within the pulsed muon beam time window.

 $f_{\mu}(T)$, corresponding to the magnetic order parameter, is fitted to the phenomenological form $f_{\mu}(T) = f_0(1-(T/T_N))^{\beta}$, $f_0=4.3$ MHz is the frequency at T=0 K and $\beta=0.29(1)$ is the critical exponent. The obtained critical exponent is not much different from the value $\beta=0.365$, expected for the 3D Heisenberg model. $T_N = 14.1$ K is slightly lower than the transition temperature of 15 K determined from the uniform susceptibility. The temperature dependence of $\lambda_T(T)$ can be also modeled with the same order-parameter fit as plotted in Fig. 1(d). Taken together, a ground state of Ba₂CuTeO₆ is characterized by a conventional antiferromagnetic order, while having persisting spin fluctuations in the ordered state.

In this report, we have presented a combined study of ZF- μ SR measurements on the coupled two-leg spin ladder Ba₂CuTeO₆. We observe unambiguously an oscillating signal in the ZF- μ SR time spectra, suggesting that Ba₂CuTeO₆ lies close to a quantum critical point from a magnetically ordered side.

References

- 1) S. Maekawa: Science 273, 1515 (1996).
- 2) B. Lake et al.: Nature Phys. 6, 50 (2009).
- 3) M. Jeong et al.: Phys. Rev. Lett. 111, 106404 (2013).
- 4) S. R. White et al.: Phys. Rev. Lett. 73, 886 (1994).
- 5) B. Normand and T. M. Rice, Phys. Rev. B 54, 7180 (1996).
- 6) A. S. Gibbs et al.: arXiv:1511.01477 (2015).
- 7) G. Narsinga Rao et al.: Phys. Rev. B 93, 104401 (2016).

^{*1} Department of Physics, Chung-Ang University