⁹⁹Ru Mössbauer spectroscopy of Na-ion batteries of Na₂RuO₃ (III)

K. Takahashi, *1 Y. Kobayashi, *1,*2 H. Haba, *2 and H. Ueno*2

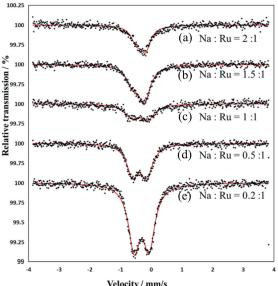
Sodium-ion batteries are attractive energy storage media owing to its abundance of sodium, compared with lithium-ion batteries. There have been many investigations of the development of Na⁺-containing electrodes as new cathodes.^{1,2)} We recently reported the electrochemical properties of Na₂RuO₃ as the cathode material.³⁾ Na₂RuO₃ has a layered structure in which the first layer is composed of Na while the second layer contains Na and Ru in the ratios 1:3 and 2:3, respectively. It was known that layered Na₂RuO₃ has two phases in the [Na_{1/3}Ru_{2/3}]O₂ layers, namely ordered and disordered arrangements, depending on the sintering time. The ordered Na₂RuO₃ phase has honeycomb-type cation ordering in the $[Na_{1/3}Ru_{2/3}]O_2$ layers. On the other hand, the *disordered* Na₂RuO₃ phase has a random distribution of Na and Ru in [Na_{1/3}Ru_{2/3}]O₂ layers. The two polymorphs exhibit significant differences in electrochemical properties.

In this study, the disordered Na₂RuO₃ phase and the Na-deficient oxides that imitate discharged samples of Na₂RuO₃, which were obtained after a short sintering time of 12 h were characterized by XRD and 99Ru Mössbauer spectroscopy to understand the change of oxidation state and coordination environment of the Ru atoms caused by the deficiency of Na^+ ions.

Disordered Na₂RuO₃ and non-stoichiometric Na-Ru oxides (atomic ratios of Na/Ru = 1.5, 1.0, 0.5, and 0.2) were synthesized by conventional solid-state reaction.²⁾ RuO₂ and NaHCO₃ were mixed with different atomic ratios of Na/Ru thoroughly and sintered at 850°C for 12 h in an Ar atmosphere. The source nuclide, ⁹⁹Rh $(T_{1/2}=15.0 \text{ d})$ of ⁹⁹Ru Mössbauer spectroscopy was produced by the ⁹⁹Ru $(p,n)^{99}$ Rh reaction at the AVF Cyclotron. After p-irradiation for 24 h, the target was used as the Mössbauer source with no chemical treatment. ⁹⁹Ru Mössbauer spectra were obtained by a conventional arrangement, but both the source and the absorbers were maintained at 4.2 K in a liquid He cryostat during the measurements.^{4,5)}

The XRD pattern of disordered Na₂RuO₃ showed a trigonal structure with a = 0.313 nm and c = 1.605 nm. The parameters were consistent with those reported in Ref. 3. The ⁹⁹Ru Mössbauer spectrum of *disordered* Na₂RuO₃ obtained at 5.0 K is shown in Fig. 1 (a). The spectrum is similar to that of ordered Na₂RuO₃, reported in Ref. 4, and is reasonably fitted by a doublet with an isomer shift (δ) of -0.34(1) mm/s and a quadrupole splitting (ΔE_0) of 0.30(5) mm/s. The linewidth of 0.44(5) mm/s was slightly broadened compared to that ordered Na₂RuO₃ owing to the shorter sintering time.

The XRD of non-stoichiometric Na-Ru oxides sintered


(d) Na : Ru = 0.5 :1 99.75 100 And the state of the Na: Ru = 0.2:1(e)99.75 99.5 99.25 99 -3 -2 -1 1 Velocity / mm/s Fig. 1. ⁹⁹Ru Mössbauer spectra of (a) disordered

Na₂RuO₃ and non-stoichiometric Na-Ru oxides (Na/Ru = (b) 1.5, (c) 1.0, (d) 0.5, and (e) 0.2) obtained by sintering at 850 °C for 12 h in an Ar atmosphere.

with Na/Ru = 1.5 indicated that the sample crystallized in two phases of Na_2RuO_3 (85%) and $NaRu_2O_4$ (15%). $NaRu_2O_4$ is in the orthorhombic space group *Pnm* and consists of double chains of edge sharing RuO₆ octahedra.⁶⁾ The Mössbauer spectrum of Na-Ru oxides with Na/Ru = 1.5 is shown in Fig. 1 (b). It was difficult to analyze the two separated components, Na₂RuO₃ and NaRu₂O₄. However, assuming that the spectrum consists of one component, the Mössbauer spectrum could have δ = -0.42(1) mm/s and $\Delta E_0 = 0.49(1)$ mm/s. The value of δ indicated that the oxidation state of Ru ions was reduced from Ru⁴⁺ to Ru^{3.5+} on average. The detailed discussion between the oxidation states of the Ru atoms and the Na/Ru ratios of non-stoichiometric Na-Ru oxides is under consideration.

References

- 1) K. M. Mogare et al., Z. Anorg. Allg. Chem. 630, 547 (2004).
- 2) M. Tamaru et al., Electrochem. Commun. 33, 23 (2013).
- 3) B. M. de Boisse et al., Nature Commun. doi 10.1038/ncomms 11397 (2016).
- 4) K. Takahashi et al., RIKEN Accel. Prog. Rep. 48, 242 (2015).
- 5) Y. Kobayashi et al., J. Phys. 217, 012023 (2010).
- 6) K. A. Regan et al., J. Solid Stat. Chem. 179, 195 (2006).

Dep. of Eng. Sci., University of Electro-Commun.

^{* 2} **RIKEN** Nishina Center