S. Yano, *1 H. Haba, *1 S. Shibata, *1 Y. Komori, *1 K. Takahashi, *1 Y. Wakitani, *2 T. Yamada, *2 and M. Matsumoto*2

Copper-67 (half life $T_{1/2} = 61.83$ h and β^- -decay branch $I_{\beta^-} = 100\%$) is one of the promising radioisotopes for radiotherapy and radiodiagnosis.¹⁾ In our preliminary study,²⁾ about 70 kBq of ⁶⁷Cu was produced in the ⁷⁰Zn($d,\alpha n$)⁶⁷Cu reaction at the AVF cyclotron. The production yield of ⁶⁷Cu was 4.0 MBq/µA h at 24-MeV deuteron beam energy. We also investigated a chemical purification procedure for ⁶⁷Cu. The chemical yield of ⁶⁷Cu was 97%, and the decontamination factors for Ga and Zn were evaluated to be ~10³ and >10³, respectively. In this work, we developed a new irradiation chamber to produce a larger amount of ⁶⁷Cu (> 100 MBq) with a more intense deuteron beam. About 100 MBq of the purified ⁶⁷Cu was obtained and its radionuclidic purity, specific radioactivity, and chemical purity were evaluated.

A schematic of the ⁶⁷Cu production chamber is shown in Fig. 1. The 24-MeV deuteron beam with an intensity of 4 μA was extracted from the AVF cyclotron. The ⁷⁰Zn-enriched oxide (⁷⁰ZnO) powder was prepared as a disk with 10-mm diameter and 340-mg cm⁻² thickness at a pressure of 2×10^3 kg cm⁻² for 3 min. The isotopic composition of the ⁷⁰Zn target was 96.87% ⁷⁰Zn, 1.55% 68Zn, 0.09% 67Zn, 0.55% 66Zn, and 0.94% 64Zn. As shown in Fig. 1, the ⁷⁰ZnO disk placed on a Ta beam stopper was covered by a high-purity Al foil 10 µm in thickness. During the irradiation, the ⁷⁰ZnO target was cooled with circulating helium gas (30 L min⁻¹) and water (1.5 L min⁻¹). The beam axis was continuously rotated in 3-mm diameter at 2 Hz to avoid local heating of the target using electromagnets on the beam line of the AVF cyclotron. After the 10-h irradiation, ⁶⁷Cu was separated from the target material and by-products such as 67Ga, 69mZn, and 71Zn through the chemical procedure reported in Ref.²⁾ The purified ⁶⁷Cu was obtained as 300 µL of 0.1 M CH₃COOH for synthesis of the ⁶⁷Cu-labeled antibody.³⁾ The radioactivity and radionuclidic purity was determined by y-ray spectrometry using a Ge detector. The specific radioactivity and chemical purity were also evaluated by chemical analysis using an inductively coupled plasma mass spectrometer (Agilent Technologies 7700x).

A γ-ray spectrum of the purified ⁶⁷Cu is shown in Fig. 2. 135 MBq of ⁶⁷Cu was produced at the end of bombardment (EOB). The major radionuclidic impurity in the purified ⁶⁷Cu was ⁶⁴Cu ($T_{1/2} = 12.70$ h). The radioactivity ratio $A(^{64}Cu)/A(^{67}Cu)$ was 1.2×10^{-2} at EOB, which decreased to 8.9×10^{-4} at 60 h after EOB (a typical time for its application studies). The present $A(^{64}Cu)/A(^{67}Cu)$ ratio is smaller than the typical value of 6.7 in the $^{68}Zn(p,2p)^{67}Cu$ reaction.⁴⁾ The radionuclidic purity of the ⁶⁷Cu solution was then evaluated to be >99.9% 60 h after EOB. In the ICP-MS analysis, only Cu (2.1 ppm) and Br (1.0 ppm) were detected with concentrations >1 ppm among the elements having atomic number $Z \ge 20$. The specific radioactivity of ⁶⁷Cu was then determined to be 220 MBq µg⁻¹ at EOB. Hundreds of MBq of the purified ⁶⁷Cu are ready for application studies. The results of synthesis of the ⁶⁷Cu-labeled antibody will be reported elsewhere.³⁾

Fig. 1. Schematic of the new ⁶⁷Cu production chamber.

Fig. 2. Typical γ -ray spectrum of the purified ⁶⁷Cu.

References

- 1) I. Novak-Hofer et al., Eur. J. Nucl. Med. 29, 821 (2002).
- 2) S. Yano et al., RIKEN Accel. Prog. Rep. 49, 22 (2016).
- 3) K. Fujiki et al., private communication.
- In Cyclotron Produced Radionuclides: Physical Characteristics and Production Methods, IAEA Technical Reports Series 468, 100 (2009).

^{*1} RIKEN Nishina Center

^{*2} Japan Radioisotope Association