Specification of 67Cu produced in the 70Zn($d,\alpha n$)67Cu reaction

S. Yano,*1 H. Haba,*1 S. Shibata,*1 Y. Komori,*1 K. Takahashi,*1 Y. Wakisaki,*1 T. Yamada,*2 and M. Matsumoto*2

Copper-67 (half life $T_{1/2} = 61.83$ h and β-decay branch $I_\beta = 100\%$) is one of the promising radioisotopes for radiotherapy and radiodiagnosis.1 In our preliminary study,2 about 70 kBq of 67Cu was produced in the 70Zn($d,\alpha n$)67Cu reaction at the AVF cyclotron. The production yield of 67Cu was 4.0 MBq/µA h at 24-MeV deuteron beam energy. We also investigated a chemical purification procedure for 67Cu. The chemical yield of 67Cu was 97\%, and the decontamination factors for Ga and Zn were evaluated to be $\sim 10^3$ and $>10^3$, respectively. In this work, we developed a new irradiation chamber to produce a larger amount of 67Cu (> 100 MBq) with a more intense deuteron beam. About 100 MBq of the purified 67Cu was obtained and its radionuclidic purity, specific radioactivity, and chemical purity were evaluated.

A schematic of the 67Cu production chamber is shown in Fig. 1. The 24-MeV deuteron beam with an intensity of 4 µA was extracted from the AVF cyclotron. The 70Zn-enriched oxide (70ZnO) powder was prepared as a disk with 10-mm diameter and 340-mg cm$^{-2}$ thickness at a pressure of 2×103 kg cm$^{-2}$ for 3 min. The isotopic composition of the 70Zn target was 96.87\% 70Zn, 1.55\% 68Zn, 0.09\% 67Zn, 0.55\% 66Zn, and 0.94\% 64Zn. As shown in Fig. 1, the 70ZnO disk placed on a Ta beam stopper was covered by a high-purity Al foil 10 µm in thickness. During the irradiation, the 70ZnO target was cooled with circulating helium gas (30 L min$^{-1}$) and water (1.5 L min$^{-1}$). The beam axis was continuously rotated in 3-mm diameter at 2 Hz to avoid local heating of the target using electromagnets on the beam line of the AVF cyclotron. After the 10-h irradiation, 67Cu was separated from the target material and by-products such as 67Ga, 68Zn, and 71Zn through the chemical procedure reported in Ref.2 The purified 67Cu was obtained as 300 µL of 0.1 M CH$_3$COOH for synthesis of the 67Cu-labeled antibody.3 The radioactivity and radionuclidic purity was determined by γ-ray spectrometry using a Ge detector. The specific radioactivity and chemical purity were also evaluated by chemical analysis using an inductively coupled plasma mass spectrometer (Agilent Technologies 7700x).

A γ-ray spectrum of the purified 67Cu is shown in Fig. 2. 135 MBq of 67Cu was produced at the end of bombardment (EOB). The major radionuclidic impurity in the purified 67Cu was 64Cu ($T_{1/2} = 12.70$ h). The radioactivity ratio $A(^{64}$Cu)/$A(^{67}$Cu) was 1.2×10^{-2} at EOB, which decreased to 8.9×10^{-4} at 60 h after EOB (a typical time for its application studies). The present $A(^{64}$Cu)/$A(^{67}$Cu) ratio is smaller than the typical value of 6.7 in the 68Zn($p,2p$)67Cu reaction.4 The radionuclidic purity of the 67Cu solution was then evaluated to be $>99.9\%$ 60 h after EOB. In the ICP-MS analysis, only Cu (2.1 ppm) and Br (1.0 ppm) were detected with concentrations >1 ppm among the elements having atomic number $Z \geq 20$. The specific radioactivity of 67Cu was then determined to be 220 MBq µg$^{-1}$ at EOB. Hundreds of MBq of the purified 67Cu are ready for application studies. The results of synthesis of the 67Cu-labeled antibody will be reported elsewhere.3

References
3) K. Fujiki et al., private communication.

*1 RIKEN Nishina Center
*2 Japan Radioisotope Association