Development of a production technology of ²¹¹At at the RIKEN AVF cyclotron: (i) Production of ²¹¹At from the ²⁰⁹Bi $(\alpha, 2n)^{211}$ At reaction

N. Sato,^{*1} S. Yano,^{*1} A. Toyoshima,^{*1,*2,*3} H. Haba,^{*1} Y. Komori,^{*1} S. Shibata,^{*1} K. Watanabe,^{*1} D. Kaji,^{*1} K. Takahashi,^{*1} and M. Matsumoto^{*4}

A statine-211 (²¹¹At, $T_{1/2} = 7.214$ h) is one of the promising radio nuclides for the α -particle therapy of diseases. The 5.9- and 7.5-MeV α -particle emissions occur with intensities of 42% and 58%, respectively, associated with the ²¹¹At decay.¹) Owing to the proper ranges of these α -particles in tissue (60–80 μ m), the ²¹¹At-labeled medicine is effective in killing focus cells. For the pre-clinical and clinical trials, a large amount of ²¹¹At-labeled compounds is needed.

We have started to produce 211 At from the $^{209}\mathrm{Bi}(\alpha,2n)^{211}\mathrm{At}$ reaction at the RIKEN AVF cyclotron and to distribute it to researchers in universities and institutes in Japan. Figure 1 shows the irradiation system for the 211 At production. An 18- μ m beryllium window was placed to separate the vacuum beam line and the He-filled ²¹¹At production chamber. A metallic ²⁰⁹Bi target (chemical purity: >99.999%, typical thickness: 20 mg/cm^2) was prepared by vacuum evaporation onto an Al backing plate of 1-mm thickness. The Bi target was placed at an angle of 15° with respect to the beam axis. A 29.36-MeV α beam was delivered from the AVF cyclotron; the beam energy on the center of the target surface was calculated to be 28.4 MeV with the SRIM-2013 program.²⁾ To obtain ²¹¹At with a high radionuclidic purity, the α beam energy was controlled at 28–29 MeV to prevent the production of ²¹⁰At ($T_{1/2} = 8.1$ h), which decays to a highly toxic α emitter ²¹⁰Po ($T_{1/2} = 138$ d); the threshold energy for the ²⁰⁹Bi($\alpha, 3n$)²¹⁰At reaction is 28.6 MeV. Thus, electrostatic pickups were used for an accurate evaluation of the beam energy.³⁾ The target was cooled with circulating water (1.5 L/min) and He gas (30 L/min) during the irradiation. A beam wobbler system was used to rotate the beam spot on the target and to prevent heat concentration. The Bi targets were irradiated for 20-30 min at beam intensities between 1 and 10 particle μA . After the irradiation, the targets were subjected to γ -ray spectrometry with a Ge detector.

Figure 2 shows the thick-target yield of ²¹¹At as a function of the α -beam energy on the target. Our experimental data almost agree with the IAEA recommended values.⁴) The deduced yield of ²¹¹At was 7.2 ± 0.5 GBq/C at 28.4 MeV, which was nearly constant upto 10 particle μ A. According to this work,

*2 Advanced Science Research Center, Japan Atomic Energy Agency

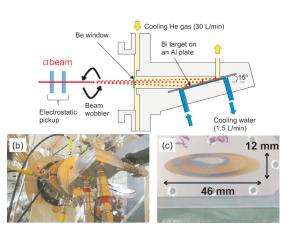


Fig. 1. (a) Schematic view of the irradiation system. (b) Photograph of the ²¹¹At production chamber. (c) Vacuum-evaporated Bi target on an Al plate (after irradiation).

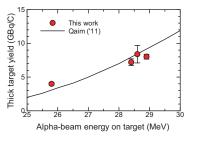


Fig. 2. Thick target yield of 211 At as a function of α -beam energy. The solid curve indicates the IAEA recommended value.⁴)

about 500 MBq of ²¹¹At could be obtained under 10 particle μ A irradiation for 1 h. The atomic ratio of ²¹⁰At/²¹¹At at the end of bombardment (EOB) was estimated to be < 1×10^{-5} , which satisfied the medical requirement of < 1×10^{-3} at EOB.⁵⁾ After the irradiation, ²¹¹At was purified by a dry distillation method, which is reported in our succeeding paper.⁶⁾

References

- R. B. Firestone et al.: Table of Isotopes CD-ROM, 8th ed. (John Wiley and Sons, New York, 1998).
- J. F. Ziegler et al.: Nucl. Instrum. Meth. Phys. Res. B 268, 1818 (2010).
- T. Watanabe et al.: Proc. 12th Annual Meeting of Particle Accelerator Society of Japan (2015), p. 1198.
- S. M. Qaim et al. (eds.): IAEA Technical Report Series No. 473, IAEA, Vienna, Austria (2011).
- 5) A. Hermanne et al.: Appl. Radiat. Isot. **63**, 1 (2005).
- 6) S. Yano et al.: In this report.

^{*1} RIKEN Nishina Center

^{*&}lt;sup>3</sup> Graduate School of Science, Osaka Univ.

 $^{^{\}ast 4}$ Japan Radioisotope Association