Measurement of \vec{p} -⁶He elastic scattering at 200 A MeV

S. Sakaguchi, ^{*1,*2} S. Chebotaryov, ^{*2,*3} T. Uesaka, ^{*2} T. Akieda, ^{*4} Y. Ando, ^{*3} M. Assie, ^{*5} D. Beaumel, ^{*2,*5} N. Chiga, ^{*2} M. Dozono, ^{*6} A. Galindo-Uribarri, ^{*7} B. Heffron, ^{*7} A. Hirayama, ^{*8} T. Isobe, ^{*2} S. Kawase, ^{*1} W. Kim, ^{*3} T. Kobayashi, ^{*4} H. Kon, ^{*4} Y. Kondo, ^{*8} Y. Kubota, ^{*2} S. Leblond, ^{*9} H. Lee, ^{*9} T. Lokotko, ^{*9} Y. Maeda, ¹⁰ Y. Matsuda, ¹¹ K. Miki, ^{*4} E. Milman, ^{*2,*3} T. Motobayashi, ^{*2} T. Mukai, ^{*4} S. Nakai, ^{*4} T. Maeda, ** T. Matsuda, ** K. Miki, ** E. Millian, ** T. Motobayasin, ** T. Mukal, ** S. Nakal, **
T. Nakamura, ** A. Ni, ** T. Noro, *1 S. Ota, ** H. Otsu, ** T. Ozaki, ** V. Panin, ** S. Park, ** A. Saito, **
H. Sakaguchi, *12 H. Sakai, ** M. Sasano, ** H. Sato, ** K. Sekiguchi, ***, Y. Shimizu, ** I. Stefan, **
L. Stuhl, ** M. Takaki, ** K. Taniue, ***
K. Tateishi, ** S. Terashima, *** Y. Togano, **
T. Tomai, **
Y. Wada, ** T. Wakasa, ***
T. Wakui, ***
A. Watanabe, **
H. Yamada, **
Z. Yang, **
M. Yasuda, **

J. Yasuda, ^{*1} K. Yoneda ^{*2} and J. Zenihiro ^{*2}

We measured the vector analyzing power for p^{-6} He elastic scattering at 200 A MeV using a spin-polarized solid proton target and the SAMURAI spectrometer with the aim of investigating spin-orbit interaction between proton and ⁶He (SAMURAI13 experiment). The experimental setup is described in this article.

A ^{6}He beam was produced from an ^{18}O beam with 230 A MeV using a 15 mm^t Be target and an 8 mm^t F1 degrader. Triton contamination was suppressed to 25% of the total beam intensity with an F2 collimator and was further reduced to 6% by closing the F2 slit to $2 \times 2 \text{ mm}^2$. The experimental setup around the target is schematically shown in Fig. 1. Special care was taken to reduce the size of the beam spot at F13. STQ25 was moved 1 m closer to the target for better focusing. A veto scintillator (SBV) with an $\phi 18 \text{ mm}$ hole was installed in front of the target. The beam intensity was kept at approximately 0.6 MHz. The typical transmission ratio of the beam through SBV was 78%. The beam-spot size on the target was 5 mm in sigma. The polarized proton target was placed 4 m from the SAMURAI magnet center. The target material was naphthalene (C₁₀H₈) with a size of ϕ 24 mm × 2.5 mm^t (285 mg/cm²). Two lasers with wavelengths of 556 nm and 545 nm and average powers of 3 W and 0.75 W, respectively, were installed near STQ25. Pulsed laser light with a repetition rate of 3 kHz was delivered to the target. Recoil protons were detected at both the left and right sides of the beamline with ESPRI-RPS¹). Each system consists of a drift chamber, an energy absorber, one plastic scintillator and seven NaI(Tl) scintillators. For the detection of scattered particles, FDC0 was placed 400 mm away from

- *1 Department of Physics, Kyushu University *2
- **RIKEN** Nishina Center
- *3 Department of Physics, Kyungpook National University
- *4 Department of Physics, Tohoku University
- *5IPN Orsay *6
- CNS University of Tokyo *7
- Oak Ridge National Laboratory *8
- Department of Physics, Tokyo Institute of Technology *9
- Department of Physics, University of Hong Kong *10
- Department of Physics, Miyazaki University *11
- CYRIC Tohoku University
- *12 RCNP Osaka University
- *¹³ Department of Physics, Beihang University
- *¹⁴ National Institute of Radiological Sciences

the target. It is expected to have good high-rate tolerance because of its small cell size of 5 mm. FDC0 was operated with a position resolution of 130 μ m in sigma and a tracking efficiency of >98% even for a 1 MHz beam. Two S1-MWDCs from SHARAQ Gr. were placed behind FDC0. Scattered particles were analyzed using the SAMURAI spectrometer with a magnetic field of 2.0 T. The effect of the stray field on the performance of PMTs, polarized target and oxygen monitors was not observed. 95% of the volume of the gap chamber was replaced with helium gas to maximize the acceptance of SAMURAI without severely degrading the $B\rho$ resolution. The FDC1 chamber was slightly over-pressurized (+0.35 kPa) compared to the pressure in the gap chamber to avoid reverse force on its window film. The obtained $B\rho$ resolution was about 1/300, which is one third of the typical value. This is primarily because of the multiple scattering in helium gas and secondarily because of a low magnetic field of 2.0 T. 2.9 T is ideal for 6 He at 200 A MeV. The beam propagating through SAMURAI was stopped by a lead block with a size of $10 \times 10 \times 40$ cm³ for protecting FDC2. FDC2 and HODF24 were placed parallel to SAMURAI to cover both ⁶He and ⁴He trajectories. Measurements of \vec{p}^{-6} He (physics run) and \vec{p}^{-4} He scattering (polarization calibration) were performed for 3 days and 1 day, respectively. The polarization axis was reversed once in each run. The carbon target and empty target data were also taken. The current status of the data analysis is described in another $\operatorname{article}^{2}$.

Fig. 1. Setup for SAMURAI13 experiment.

References

- 1) Y. Matsuda et al., Phys. Rev. C 87, 034614 (2013).
- 2) S. Chebotaryov et al., in this report.