Measurement of 4He(8He,8Be) reaction for verifying tetra-neutron resonance

S. Masuoka,1 S. Shimoura,1 M. Takaki,1 D. S. Ahn,2 H. Baba,2 M. Dozono,2 N. Fukuda,2 T. Harada,3 E. Ideguchi,4 N. Imat,1 N. Inabe,2 C. Iwamoto,1 K. Kawata,1 N. Kitamura,1 M. Kobayashi,1 Y. Kondo,5 T. Kubo,2 Y. Maeda,6 F. M. Marqués,7 M. Matsushita,1 S. Michimasa,1 R. Nakajima,1 T. Nakamura,5 N. Orr,7 S. Ota,1 H. Sakai,2 P. Schrock,1 L. Stuhl,1,2 T. Sumikama,2 H. Suzuki,2 H. Takeda,2 K. Taniiue,6 H. Tokieda,2 T. Uesaka,2 K. Wimmer,8 K. Yako,1 Y. Yamaguchi,1 Y. Yanagisawa,2 R. Yokoyama,1 K. Yoshida,2 and J. Zenihiro2

The existence of nuclei composed only of neutrons has been discussed for over half a century, but it has not been confirmed yet. In 2002, a candidate bound state of the tetra-neutron, which consists of four neutrons, was reported.1 An ab-initio calculation suggested that there might be a tetra-neutron (4\text{n}) resonance, but a bound 4\text{n} was not reproduced.2 An experimental search for the 4\text{n} resonance state conducted using the exothermic double charge exchange (DCX) 4He(8He,8Be)4\text{n} reaction was performed at the SHARAQ spectrometer in RIBF.3 As a result, four candidate events were found with a 4.9\text{\textsigma} significance level, and the energy of the 4\text{n} resonance was determined as $E_{4\text{n}} = 0.83 \pm 0.65$ (stat.) ± 1.25 (syst.) MeV. To confirm the existence of 4\text{n} resonance, we performed a new measurement with higher statistics and with smaller energy uncertainty.

Fig. 1. Detector setup of BigRIPS/SHARAQ beam line.

Figure 1 shows a schematic view of the setup for this experiment. A primary 18O beam was accelerated to about 230 MeV/nucleon by AVF+RRC+SRC. The intensity of the primary beam was about 700 particles. The energy of the secondary 8He beam was about 186 MeV/nucleon. The beam intensity was increased from that in the previous experiment. The rate of the secondary beam at F3 was increased from about 2.0 MHz to 3.5 MHz. Six low-pressure multiwire drift chambers (LP-MWDCs) were installed for tracking the beam. “F6” was set as a dispersive focal plane, so that the momentum of the beam could be measured by the focus position. At “S0,” a liquid He target system (CRYPTA) was installed. At the final focal plane, “S2,” 2 α particles from the decay of outgoing 8Be were detected using 2 cathode readout drift chambers (CRDCs).

Fig. 2. A preliminary hit pattern of the 1H(t,3He) reaction at S2 for the energy calibration with a reaction kinematics curve. The X and Y axes represent the missing momentum and the vertical scattering angle, respectively.

In the present experiment, the method of missing-momentum calibration was changed to reduce the systematic error of the 4\text{n} energy. As a reference for the energy, the 1H(t,3He) reaction was measured with a triton beam that has the same magnetic rigidity as the 8He beam (8.3 Tm). The energy can be calibrated without changing the magnetic settings. Figure 2 shows an S2 image of outgoing 3He particles from the 1H(t,3He) reaction. The red line indicates the fitted kinematics curve of the reaction. The threshold energy of the 4\text{n} state can be determined from the curve. Further analysis is now in progress.

References