Parity-transfer $({}^{16}O, {}^{16}F(0^{-}))$ reaction to study spin-dipole 0^- states

M. Dozono,^{*1} T. Uesaka,^{*2} N. Fukuda,^{*2} M. Ichimura,^{*2} N. Inabe,^{*2} S. Kawase,^{*1} K. Kisamori,^{*1} Y. Kiyokawa,^{*1} K. Kobayashi,^{*3} M. Kobayashi,^{*1} T. Kubo,^{*2} Y. Kubota,^{*1} C. S. Lee,^{*1} M. Matsushita,^{*1} S. Michimasa,^{*1} H. Miya,^{*1} A. Ohkura,^{*4} S. Ota,^{*1} H. Sagawa,^{*2,*5} S. Sakaguchi,^{*4} H. Sakai,^{*2} M. Sasano,^{*2} S. Shimoura,^{*1} Y. Shindo,^{*4} L. Stuhl,^{*2} H. Suzuki,^{*2} H. Tabata,^{*4} M. Takaki,^{*1} H. Takeda,^{*2} H. Tokieda,^{*1}

T. Wakasa,^{*4} K. Yako,^{*1} Y. Yanagisawa,^{*2} J. Yasuda,^{*4} R. Yokoyama,^{*1} K. Yoshida,^{*2} and J. Zenihiro^{*2}

We proposed a new reaction probe, *parity-transfer* $({}^{16}O, {}^{16}F(0^-, g.s.))$ reaction, as a powerful tool to study spin-dipole (SD) 0^- states in nuclei¹⁾. This reaction has a unique selectivity to unnatural-parity states, which is an advantage over the other reactions used thus far. As the first measurement, the $^{12}C(^{16}O, ^{16}F(0^-))$ reaction at 247 MeV/u was studied in the SHARAQ08 experiment at RIBF. A known 0⁻ state at $E_x = 9.3$ MeV in ${}^{12}B^{2)}$ serves as a benchmark to verify the effectiveness of this reaction. The details of the experimental setup and method can be found in $Ref.^{3)}$.

The results of the present study are currently being prepared for publication. In this report, we discuss the selectivity of the parity-transfer reaction to 0^{-} states by comparing our data with that previously obtained by the ${}^{12}C(d, {}^{2}\text{He})$ reaction at 270 MeV⁴). Figures 1(a) and 1(b) show excitation energy (E_x) spectra for the ${}^{12}C({}^{16}O, {}^{16}F(0^-))$ reaction at $\theta_{lab} = 0^{\circ} - 0.25^{\circ}$ and $0.25^{\circ} - 0.45^{\circ}$, respectively. The energy resolution is 2.6 MeV in FWHM. Note that the events at $E_x \sim -10$ MeV are due to hydrogens in the target. The ¹²C(d, ²He) spectra at $\theta_{\rm cm} = 0^{\circ} - 1^{\circ}$ and $6^{\circ} - 8^{\circ}$ are shown as dashed curves in Figs. 1(a) and 1(b), respectively. Here, the momentum transfer is comparable to that of our data in each figure. (Their values are $q \sim 0.3$ and 0.5 fm^{-1} in Figs. 1(a) and 1(b), respectively). Solid curves represent the $(d, {}^{2}\text{He})$ cross sections after smearing with an energy resolution of the present experiment. The $(d, {}^{2}\text{He})$ spectra have been arbitrarily normalized to the $({}^{16}O, {}^{16}F(0^{-}))$ cross sections for the 1^+ g.s.

The excitation of the 1^+ g.s. and the 2^- state at $E_x = 4.4$ MeV can be seen in both reaction data, while the structures at $E_x \gtrsim 6$ MeV are largely dif-ferent. A bump structure at $E_x = 7.5$ MeV ("A" in Fig. 1(b)) seen in the $(d, {}^{2}\text{He})$ reaction is missing in the $({}^{16}O, {}^{16}F(0^-))$ spectra. This is because naturalparity states are not populated with the parity transfer reaction. Another striking difference is a peak at $E_x \sim 9$ MeV observed in Fig. 1(a); a clear enhancement appears in the $({}^{16}O, {}^{16}F(0^-))$ data but vanishes in the $(d, {}^{2}\text{He})$ data. This enhancement is due to the known 0^- state at $E_x = 9.3$ MeV. These differences in Fig. 1 indicate that the parity-transfer reaction has a high selectivity to 0^{-} states. The feature will be confirmed by further discussions including angular distributions and DWBA calculations in our future publication.

 $^{12}\mathrm{C}(^{16}\mathrm{O},^{16}\mathrm{F}(\mathrm{O}^{-}))$ at 247 MeV/u 0.20 $\theta_{\rm lab} = 0.00^{\circ} - 0.25^{\circ}$ (a) ×0.3 0.15 ²He) data $= 0^{\circ} - 1^{\circ}$ H $d^2\sigma/d\Omega dE ~({
m mb\,sr^{-1}\,MeV^{-1}})$ 0.10 0.05 0.00 0.20 (b) θ_{lab} $0.25^{\circ} - 0.45^{\circ}$ 2 0.15 d,²He) data $m = 6^{\circ} - 8^{\circ}$ 0.10 0.05 0.00 -15 -10-50 5 10 15 20 Excitation energy of ¹²B (MeV)

Fig. 1. Excitation energy spectra for the ${}^{12}C({}^{16}O, {}^{16}F(0^-))$ reaction. The dashed and solid curves represent the experimental data for the ${}^{12}C(d, {}^{2}He)$ reaction⁴).

References

- 1) M. Dozono et al., RIKEN Accel. Prog. Rep. 45, 10 (2012).
- 2) H. Okamura et al., Phys. Rev. C 66, 054602 (2002).
- 3) M. Dozono et al., Nucl. Instrum. Meth. A 830, 233 (2016).
- 4) H. Okamura et al., Phys. Lett. B **345**, 1 (1995).

^{*1} Center for Nuclear Study, University of Tokyo

^{*2} **RIKEN** Nishina Center

^{*3} Department of Physics, Rikkyo University

^{*4} Department of Physics, Kyushu University

^{*5} Center for Mathematics and Physics, University of Aizu