Spallation reaction study for the long-lived fission product ¹⁰⁷Pd[†]

H. Wang,^{*1} H. Otsu,^{*1} H. Sakurai,^{*1} D. Ahn,^{*1} M. Aikawa,^{*2} T. Ando,^{*3} S. Araki,^{*4,*1} S. Chen,^{*1} N. Chiga,^{*1} P. Doornenbal,^{*1} N. Fukuda,^{*1} T. Isobe,^{*1} S. Kawakami,^{*5,*1} S. Kawase,^{*6,*4} T. Kin,^{*4} Y. Kondo,^{*7,*1} S. Koyama,^{*3} S. Kubono,^{*1} Y. Maeda,^{*5} A. Makinaga,^{*8} M. Matsushita,^{*6} T. Matsuzaki,^{*1} S. Michimasa,^{*6}

S. Momiyama,^{*3} S. Nagamine,^{*3} T. Nakamura,^{*7,*1} K. Nakano,^{*4,*1} M. Niikura,^{*3} Y. Ozaki,^{*7,*1}

A. T. Saito,^{*7,*1} T. Saito,^{*3} Y. Shiga,^{*1,*9} M. Shikata,^{*7,*1} Y. Shimizu,^{*1} S. Shimoura,^{*6} T. Sumikama,^{*1}

P.-A. Söderström,^{*1} H. Suzuki,^{*1} H. Takeda,^{*1} S. Takeuchi,^{*7,*1} R. Taniuchi,^{*1,*3} Y. Togano,^{*7,*1} J. Tsubota,^{*7,*1} M. Uesaka,^{*1} Ya. Watanabe,^{*1} Yu. Watanabe,^{*4} K. Wimmer,^{*3,*1}

T. Yamamoto,^{*5,*1} and K. Yoshida^{*1}

In recent years, substantial research and development activity has been devoted to partitioning and transmutation technology for the reduction in highlevel radioactive waste $(HLW)^{1}$ as well as for resource recycling from spent nuclear fuel. Fission products in HLW contain useful materials, and one promising metal is palladium. However, the palladium metal recovered from waste has a radioactive isotope, ¹⁰⁷Pd, which is a typical long-lived fission product (LLFP) with a half-life of 6.5×10^6 years²⁾. In considering a possible mechanism for the reduction in the radioactivity of ¹⁰⁷Pd, we performed the studies for the protonand deuteron-induced spallation reaction on $^{107}\mathrm{Pd}$ at both 196 and 118 MeV/u using inverse kinematics technique.

A 238 U primary beam was accelerated to 345 MeV/uand impinged on a 1-mm thick beryllium target located at the entrance of the BigRIPS fragment separator³). Two settings were made in BigRIPS to make the ¹⁰⁷Pd beams with the energies of 196 and 118 MeV/u in front of the secondary targets, respectively. CH_2 , $CD_2^{(4)}$ and ¹²C targets were used to induce the secondary reactions. The thicknesses for CH_2 and CD_2 were 179.2 and 217.8 mg/cm², respectively. For the 12 C targets, the thicknesses were 317.2 and 226.0 mg/cm^2 for 196and 118 MeV/u, respectively. In order to measure the background contribution, additional data were taken by using the target holder with no target material inserted. Reaction residues were identified by the ZeroDegree spectrometer³). The large acceptance mode was used and five different $B\rho$ settings were applied in order to cover a broad range of fragments.

The isotopic distribution of cross sections for the different elements produced from ¹⁰⁷Pd on protons and deuterons at both 196 and 118 MeV/u were suc-

- *2 Faculty of Science, Hokkaido University
- *3 Department of Physics, University of Tokyo
- *4 Department of Advanced Energy Engineering Science, Kyushu University
- *5Department of Applied Physics, University of Miyazaki *6
- CNS, University of Tokyo
- *7Department of Physics, Tokyo Institute of Technology
- *8 JEin institute for fundamental science, NPO Einstein
- *9 Department of Physics, Rikkyo University

ž^{ŽŽŽŽŽŽŽ}Ž 10² Pd (Z = 46)Ag (Z=47)△ D 196 MeV/u ▽ H 196 MeV/u 101 100 Cross section [mb] 10^{-1} b) 10² Ru (Z=44) Rh (Z = 45) ⇔^{≎≎}≎_{≎≎} 索 **₽** 10¹ Ż **‡**☆ 100 10^{-1} c) d) 10² Mo (Z=42) Tc (Z = 43)^⇔ 101 100 f) 10^{-1} e) 90 95 100 105 85 90 95 100 105 85 Mass number A

Fig. 1. Isotopic production cross sections for $42 \le Z \le 47$ elements produced by ¹⁰⁷Pd on protons and deuterons at different reaction energies.

cessfully obtained. It was found that the protoninduced cross sections at 196 MeV/u are similar to the deuteron-induced ones at 118 MeV/u for light products such as Ru, Tc and Mo, as shown in Fig. 1 d) - f). The production of these light products depends on the energy deposited. Because deuteron has two nucleons, the deuteron-induced reaction at 118 MeV/u dissipates an energy that is similar to that of the proton-induced reaction at 196 MeV/u in the evaporation process, resulting in a similar production. In addition, the results are discussed by comparing them with the SPACS parameterization and the PHITS calculation including both the intra-nuclear cascade and evaporation processes. Our data provide a design goal for the proton/deuteron flux for the transmutation of ^{107}Pd via spallation reactions.

This work was supported by ImPACT program of Council for Science, Technology and Innovation (Cabinet Office, Government of Japan).

References

- 1) IAEA Technical Reports Series No. 435 (2004).
- 2) W. S. Yang et al., Nucl. Sci. Eng. 146, 291 (2004).
- 3) T. Kubo et al., Prog. Theor. Exp. Phys. 2012, 03C003 (2012)
- 4) Y. Maeda et al., Nucl. Instr. Meth. A 490, 518 (2002).

t Condensed from the article in Prog. Theor. Exp. Phys. 2017, 021D01 (2017)

^{*1} **RIKEN** Nishina Center