Precision mass measurements of proton-rich nuclei in A $\sim 60-80$ region with the multireflection time-of-flight mass spectrograph

S. Kimura,^{*1,*2} Y. Ito,^{*2} D. Kaji,^{*2} P. H. Schury,^{*3} M. Wada,^{*3,*2} H. Haba,^{*2} T. Hashimoto,^{*4} Y. Hirayama,^{*3} M. MacCormick,^{*5} H. Miyatake,^{*3} J. Y. Moon,^{*4} K. Morimoto,^{*2} M. Mukai,^{*1,*2} I. Murray,^{*5,*2} A. Ozawa,^{*1,*2} M. Rosenbusch,^{*2} H. Schatz,^{*6}

A. Takamine,^{*2} T. Tanaka,^{*7,*2} Y. X. Watanabe,^{*3} H. Wollnik,^{*8} and S. Yamaki^{*9,*2}

Nuclear masses of nuclei near the proton drip line up to 100 Sn are crucial in determining the *rp*-process pathway which drives explosive astronomical phenomena called type I X-ray bursts (XRB). In order to compare different XRB models meaningfully, the relative mass uncertainties must be improved. Precisions of the order of $\delta m/m \lesssim 10^{-7}$ are necessary for current rp-process calculations¹). Half lives of the key nuclei in the rp-process are of the order of several tens to several hundreds of milliseconds. The multireflection time-offlight mass spectrograph (MRTOF) satisfies the experimental requirements for these conditions²).

We performed mass measurements of the protonrich nuclei in the A $\sim 60-80$ region by utilizing the MRTOF combined with a gas-filled recoil ion separator GARIS-II³⁾ via a gas-cell and an ion transport system. To produce the proton-rich nuclei the fusionevaporation reaction $^{nat}S(^{36}Ar,X)$ was used. In this reaction, it was expected that the inadequate separation in GARIS-II between the evaporation residues and the primary beam would lead to breakage of the gas cell and the GARIS-II bulkhead thin mylar windows due to irradiation damage. Therefore, we installed two independent beam stoppers $^{4)}$. We also installed a double-layered plastic scintillator combined with copper energy degraders to suppress the low energy β -rays ($E_{\beta} \lesssim 4 \text{ MeV}$) at the GARIS-II focal plane for the β -activity search. The energy and maximum intensity of the ${}^{36}\text{Ar}^{10+}$ beam were 3.30 MeV/nucleon and 3 particle μA , respectively. The average target thickness of $^{nat}S_2Mo$ on Ti backing was 1.9 mg/cm².

Figure 1 shows the intensity distribution of β activities as a function of magnetic rigidity. Mass measurements were performed with two different GARIS-II settings, $B\rho = 0.86$ Tm and $B\rho = 1.01$ Tm. The settings corresponded, respectively, to the sulfur reaction products and unexpected reaction products on

- *4Institute for Basic Science
- *5 Institut de Physique Nucléaire, Orsay
- *6 Department of Physics and Astronomy and National Superconducting Cyclotron Laboratory, Michigan State Universitv
- *7 Department of Physics, Kyushu University
- *8 New Mexico State University
- *9 Department of Physics, Saitama University

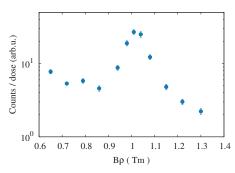


Fig. 1. Intensity distribution of β -activities as a function of magnetic rigidity.

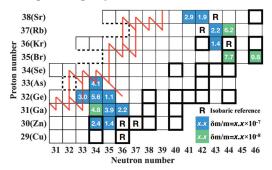


Fig. 2. Summary of the mass measurements. The bold-line boxes indicate the stable isotopes. The dashed lines indicate the proton drip line. The color-coded boxes indicate the mass precision of measurements: a precision of 10^{-7} is indicated by blue and a precision of 10^{-8} is indicated by green. The isotopes labeled "R" are used as isobaric references. The red line represents the rpprocess pathway, which has a mass fraction greater than $10\%^{5)}$.

the titanium backing. We found two dozen isotopes in the time-of-flight spectra of the MRTOF with clear peaks. The nuclear masses were determined by the single-reference method; thus, in each isobaric series, we utilized an isotope as a mass reference. The summary of the preliminary results is shown in Fig. 2.

We successfully measured nuclear masses with the required precision under the worse separation condition in GARIS-II. We must now proceed to the more proton-rich side to improve the understanding of the rp-process in XRBs.

References

- 1) H. Schatz, IJMS 349-350, 181 (2013).
- 2) P. H. Schury et. al., NIM B 335, 39 (2014).
- 3) D. Kaji et. al., NIM B **317**, 311 (2013).
- 4) S. Kimura et. al., in this report.
- 5) H. Schatz et. al., PRL 86, 3471 (2001).

^{*1} Institute of Physics, University of Tsukuba

^{*2} **RIKEN** Nishina Center

^{*3} Wako Nuclear Science Center (WNSC), Institute of Particle and Nuclear Studies (IPNS), High Energy Accelerator Research Organization (KEK)