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β-NMR measurements of 21O
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Oxygen nuclear magnetic resonance (NMR) serves
as a powerful tool to realize the atomic-scale proper-
ties of a vast variety of oxygen-containing materials.
Such studies, however, have been so far complicated
by different objective limitations such as low natu-
ral abundance of the NMR-active 17O isotope, and
difficulties and costliness of the isotopic enrichment.
Alternatively, the 13O and 19O isotopes with known
values of nuclear moments would seem appropriate to
be used in β-ray-detected nuclear magnetic resonance
(β-NMR) studies. However, the use of these isotopes
also has strong disadvantages such as low beam pu-
rity in case of proton-rich 13O and relatively long life-
time of 19O(T1/2 = 26.5 s) leading to the insufficient
NMR-signal intensity. All these aspects make 21O a
good candidate to be used as a probe to investigate
the structure and properties of oxide-based systems.
As a first step for such studies, the electromagnetic
moments of this isotope must be determined.
In the present research, we measured the ground-

state magnetic dipole moment and electric quadrupole
moment of the 21O isotope. The experiment was car-
ried out using the projectile-fragment separator RIPS
at the RIBF facility. A secondary beam of 21O was
produced in the projectile fragmentation reaction in-
volving one neutron pick-up reaction of a 22Ne beam
at 69A MeV on a 1.0-mm-thick Be target. The two-
stage isotope separation through the momentum and
momentum-loss analyses by RIPS was applied to pu-
rify the 21O beam. The momentum window and emis-
sion angle of the primary beam were selected to be
pF = p0 × (0.97± 0.03) and θF > 2.1◦, respectively.

Electromagnetic moments were measured by means
of the β-NMR/NQR method in combination with the
adiabatic fast passage (AFP) technique?). In the
g-factor measurements the beam was implanted into
the 0.5-mm-thick CaO stopper placed at the center
of the dipole magnet of the β-NMR system that pro-
vided a static magnetic field of ∼500 mT. Some of
the obtained NMR spectra are presented in Fig. 1.
The NQR measurements, in turn, require the presence
of the electric field gradient (EFG) in the medium.
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Fig. 1. β-NMR spectra of 21O in a CaO crystal. Frequency

sweeps with the widths of 35 kHz, 14 kHz and 3 kHz

are plotted with blue circles, red triangles and green

squares, respectively. During the experiment the to-

tal frequency range from 1956 kHz to 2445 kHz was

scanned.

Fig. 2. β-NQR spectrum of 21O in the TiO2 single crystal.

The dashed curve is a guide to the eye representing the

expected fitting curve shape. The actual fitting analysis

is work-in-progress. For the definition of νQ, see Ref?).

For this purpose the 0.5-mm-thick TiO2 single crys-
tal with a known value of EFG was used as a stopper
and placed in the same magnetic field of ∼500 mT.
The obtained NQR spectrum is shown in Fig. 2. Ron

and Roff in Figs. 1 and 2 represent the U/D ratios
between the counts of upper and lower plastic scintil-
lators with and without the application of oscillating
magnetic field, respectively.
The analysis of the obtained NMR/NQR spectra is

in progress.
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adiabatic fast passage (AFP) technique1). In the

is work-in-progress. For the definition of νQ, see Ref. 2.




