Production of a 7Be implanted target

The beam system for reaction of isotope of long-life with light-ions applying normal kinematics and implanted target (BRILLIANT) is a project to realize light-ion reaction with implanted targets. The first application is for 7Be to measure the 7Be(d, p) reaction for studying the primordial 7Li production in Big-Bang nucleosynthesis (BBN).

The overestimation of primordial 7Li abundance in the standard BBN model is one of the known and unresolved problems in nuclear astrophysics. The latest theoretical BBN model prediction of the primordial 7Li abundance is still 3 times higher than the recent precise observation.1 A key to solve the discrepancy is the destruction of 7Be, for which the 7Be(d, p)8Be and 7Be(n, a)4He reactions are two promising processes. It is suggested that the contribution from 7Be(d, p)8Be is larger than that from 7Be(n, a)4He.2,3 We focus on the 7Be(d, p)8Be reaction. Present available data are insufficient in terms of the accuracy or energy range.4,5 We develop an unstable 7Be target for a high-resolution measurement of the 7Be(d, p)8Be reaction in normal kinematics, which is a great technical challenge. We call the technique “implantation method.” The 7Be particles are implanted in a host material. Our goal is to implant 1×10^{12} 7Be/mm2 in 29 h.6,7

We performed an experiment in June 2016 to create the 7Be target at CRIB. The primary beam was 7Li$^{2+}$, and the secondary beam was produced by the 1H(7Li, 7Be) reaction. The 7Be beam energy was 4.0 MeV/nucleon. We used a 10-μm-thick Au foil as the host material after a 15-μm-thick Au foil as an energy degrader and a 2-mm2 collimator (Fig. 1).

We checked the beam focus and position with the F2 PPAC detector when the beam intensity was about 10^4 pps at F2. The beam diameter at F2 was 10 mm. We implanted 7Be for 19 h after increasing the beam intensity to 1.1 eμA. The amount of implanted 7Be was measured by detecting the 477-keV γ-rays from the electron-capture decay of 7Be using a LaBr$_3$ detector. Thus, we could achieve the implantation of 4×10^{10} 7Be/mm2 in the first experiment.

The number is still smaller than the goal. We suspect that the beam-spot size and the beam position at F2 were not fully optimized for the high-intensity beam and not maintained well during the long irradiation time. As a next step, we plan to have a development beam time to satisfy those conditions for producing a high-intensity 7Be beam at CRIB.

Fig. 1. Set up in the CRIB F2 chamber.

Fig. 2. Comparison between the γ-ray measurement of the implanted target and the background. An obvious 477-keV peak appeared after the irradiation.

References