Measurement of multiple isobar chains as a first step toward SHE identification via mass spectrometry†

P. Schury,*1 M. Wada,*1,2 Y. Ito,*1 D. Kaji,*2 A. Takamine,*2 F. Arai,*2,3 H. Haba,*2 Y. Hirayama,*1 S. Jeong,*7+1 S. Kimura,*1+2+3 H. Koura,*4 M. MacCormack,*8 H. Miyatake,*1 J.Y. Moon,*7+1 K. Morimoto,*2 K. Morita,*2+5 I. Murray,*2+5 A. Ozawa,*2+3 M. Reponen,*2 M. Rosenbusch,*2 P.-A. Söderström,*2 T. Tanaka,*2+5 Y. X. Watanabe,*1 and H. Wollnik*6

The SHE-mass project is a joint effort between KEK and RIKEN with a long-term goal of identifying new superheavy element (SHE) isotopes produced via hot fusion. It makes use of cryogenic-capable, high-purity helium gas cell to convert the energetic (5–50 MeV) evaporation products of fusion reactions into thermal ions. The evaporation products are separated from projectile-like fragments by use of the GARIS-II gas-filled recoil ion separator. The thermalized ions are transferred to a multi-reflection time-of-flight mass spectograph (MRTOF) which can analyze the ions with a mass resolving power of $R_m > 100000$. The SHE-mass system is described in some detail in Ref. 3.

We previously reported initial results of the SHE-mass project, where MRTOF mass measurements were performed on 205,206Fr, 205,206Rn, 205,206At, and 205Po produced via 169Tm(40Ar, X) reactions at a bombarding energy of 193 MeV. In the interim, numerous upgrades were made to the apparatus, increasing the system efficiency and improving stability of operation.

In July, 2016, the 169Tm(40Ar, X) reaction was revisited at a bombarding energy of 207 MeV. At this higher energy, it was possible to simultaneously observe $4n$ and $5n$ evaporation channels (204,205Fr$^+$), $5p3n$ and $5p4n$ evaporation channels (204,205Rn$^+$) as well as higher-order evaporation channels (204,205At$^+$, 204,205Po$^+$, 205Bi$^+$). The very small β-decay branching ratios of 204,205Fr$^+$ (4(2)% and <1%, respectively) and the long half-lives of the lower-Z isotopes indicate that these are dominantly directly produced and not decay products.

Of particular interest for the long-term goals of the SHE-mass project, the very low-yield isotopes 205Bi, 204,205Po, and 206Rn could be identified with very few detected ions, as shown in Figs. 1 & 2. The 3-σ deviation in the case of 205Po is attributed to the admixture of a high-lying isomeric state. Based on this we can confidently claim that this technique can be applied to low-yield SHE for confirmation of their identity.

† Condensed from article published in Phys. Rev. C, DOI: 10.1103/PhysRevC.95.011305

References