Measurement of multiple isobar chains as a first step toward SHE identification via mass spectrometry^{\dagger}

P. Schury,^{*1} M. Wada,^{*1,*2} Y. Ito,^{*2} D. Kaji,^{*2} A. Takamine,^{*2} F. Arai,^{*2,*3} H. Haba,^{*2} Y. Hirayama,^{*1}
S. Jeong,^{*7,*1} S. Kimura,^{*1,*2,*3} H. Koura,^{*4} M. MacCormack,^{*8} H. Miyatake,^{*1} J.Y. Moon,^{*7,*1} K. Morimoto,^{*2}
K. Morita,^{*2,*5} I. Murray,^{*2,*8} A. Ozawa,^{*2,*3} M. Reponen,^{*2} M. Rosenbusch,^{*2} P.-A. Söderström,^{*2}
T. Tanaka,^{*2,*5} Y. X. Watanabe,^{*1} and H. Wollnik^{*6}

The SHE-mass project is a joint effort between KEK and RIKEN with a long-term goal of identifying new superheavy element (SHE) isotopes produced via hot fusion. It makes use of cryogenic-capable, high-purity helium gas cell to convert the energetic (5~50 MeV) evaporation products of fusion reactions into thermal ions. The evaporation products are separated from projectile-like fragments by use of the GARIS-II¹⁾ gasfilled recoil ion separator. The thermalized ions are transferred to a multi-reflection time-of-flight mass spectrograph²⁾ (MRTOF) which can analyze the ions with a mass resolving power of $R_{\rm m} > 100\,000$. The SHE-mass system is described in some detail in Ref. 3.

We previously reported⁴⁾ initial results of the SHEmass project, where MRTOF mass measurements were performed on 205,206 Fr, 205,206 Rn, 205,206 At, and 205 Po produced via 169 Tm(40 Ar, X) reactions at a bombarding energy of 193 MeV. In the interim, numerous upgrades were made to the apparatus, increasing the system efficiency and improving stability of operation.

In July, 2016, the ¹⁶⁹Tm(⁴⁰Ar, X) reaction was revisited at a bombarding energy of 207 MeV. At this higher energy, it was possible to simultaneous observe 4n and 5n evaporation channels (^{204,205}Fr⁺), p3n and p4n evaporation channels (^{204,205}Rn⁺) as well as higher-order evaporation channels (^{204,205}At⁺, ^{204,205}Po⁺, ²⁰⁵Bi⁺). The very small β -decay branching ratios of ^{204,205}Fr⁺ (4(2)% and <1%, respectively) and the long half-lives of the lower-Z isotopes indicate that these are dominantly directly produced and not decay products.

Of particular interest for the long-term goals of the SHE-mass project, the very low-yield isotopes ²⁰⁵Bi, ^{204,205}Po, and ²⁰⁶Rn could be identified with very few detected ions, as shown in Figs. 1 & 2. The 3- σ deviation in the case of ²⁰⁵Po is attributed to the admixture of a high-lying isomeric state⁵). Based on this we can confidently claim that this technique can be applied to low-yield SHE for confirmation of their identity.

- [†] Condensed from article published in Phys. Rev. C, DOI: 10.1103/PhysRevC.95.011305
- *1 KEK Wako Nuclear Science Center (WNSC)
- *² RIKEN Nishina Center
- $^{\ast 3}$ $\,$ Institute of Physics, University of Tsukuba
- *4 Advanced Science Research Center, JAEA
- *⁵ Dept. Physics, Kyushu University
- *6 Dept. Chem. & BioChem, New Mexico State University
- *7 Institute for Basic Science
- *8 Institut de Physique Nucléaire, IN2P3-CNRS

180 ²⁰⁴₋Rn⁺ 160 140 120 counts / 3.2 ns 100 ⁴⁰Ar @ 5.16 MeV/u n=224 laps 80 ²⁰⁵Rn^{*} 60 40 20 20 0 26750 -500 250 ?7₂₅₀ [>]000 ToF - 11 151 928 ns

Fig. 1. Time-of-flight spectrum observed for A/q=204, 205 ions at n=224 laps.

Fig. 2. Summary of the deviation of each isotopes measured mass from literature values.

References

- D. Kaji et al., Nucl. Instrum. and Methods Phys. Res. B, 317 (2013) 311-314.
- P. Schury et al., Nuclear Inst. and Methods in Physics Research B 335 (2014) 39-53.
- 3) P. Schury et al., Phys. Rev. C 95 (2017) 011305(R).
- 4) P. Schury et al., RIKEN Accel. Prog. Rep 49 (2017) 6.
- 5) F.G. Kondev, Nuclear Data Sheets 101 (2004) 521-662.