Study of α -cluster structure in ²²Mg

K.Y. Chae,^{*1} S.M. Cha,^{*1} K. Abe,^{*2} S.H. Bae,^{*3} D.N. Binh,^{*4} S.H. Choi,^{*3} N.N. Duy,^{*5} K.I. Hahn,^{*6}
S. Hayakawa,^{*2} B. Hong,^{*7} N. Iwasa,^{*8,*9} D. Kahl,^{*10} L.H. Khiem,^{*11,*12} A. Kim,^{*13} D.H. Kim,^{*13} E.J. Kim,^{*14}
G.W. Kim,^{*13} M.J. Kim,^{*1} K. Kwak,^{*15} M.S. Kwag,^{*1} E.J. Lee,^{*1} S.I. Lim,^{*13} B. Moon,^{*7} J.Y. Moon,^{*16}

S.Y. Park,^{*13} V.H. Phong,^{*9} H. Shimizu,^{*2} H.Yamaguchi,^{*2} L. Yang,^{*2} and Z. Ge^{*9}

The study of the α -cluster structure in a nucleus is one of the most important subjects in nuclear physics. In the case of self-conjugate 4N nuclei, it is well known that the energy levels with large α -reduced widths form the rotational bands, which indicates the molecularlike cluster structures of the nuclei. The α -cluster structure of rare isotopes is, however, still poorly understood especially for N < Z proton-rich nuclei.

As pointed out by Dufour and Descouvement,¹⁾ the proton-rich radio nuclide $^{22}\mathrm{Mg}$ is expected to show an α -cluster structure. The ²²Mg nucleus (¹⁸Ne + α system) was investigated using the generator coordinate method (GCM), which obtained results indicating the expected doubling cluster states with $J^{\pi} = 1^{-}$ and 3^- at the energy range of $12 < E_x < 13$ MeV. However, the energy levels were not clearly observed in the follow-up experiment performed by Goldberg et al.²⁾

The elastic scattering of ${}^{18}\text{Ne}(\alpha,\alpha){}^{18}\text{Ne}$ was measured in the inverse kinematics at the Center for Nuclear Study Radioactive Ion Beam Separator (CRIB) of the RIKEN Nishina Center in September 2016 for 10 days. A thick target method was adopted so that a wide energy range of 22 Mg nuclei could be scanned. A beam of rare isotope 18 Ne was produced by the ${}^{3}\text{He}({}^{16}\text{O}, {}^{18}\text{Ne})n$ reaction using the primary ${}^{16}\text{O}$ beam from the AVF cyclotron ($E_{beam} = 8.0 \text{ MeV/u}$). The ³He gas target density was 1.54 mg/cm^2 . The typical secondary beam intensity was about 3×10^5 particles per second during the runs. The ¹⁸Ne with a beam energy of ~ 50 MeV impinged on the 470 Torr of the ⁴He gas target at the final focal plane. The energy levels of ²²Mg up to $E_x \sim 18$ MeV were observed.

*1 Department of Physics, Sungkyunkwan University

- *2Center for Nuclear Study, University of Tokyo
- *3 Department of Physics and Astronomy, Seoul National University *4
- 30 MeV Cyclotron Center, Tran Hung Dao Hospital
- *5Department of Physics, Dong Nai University
- *6 Department of Science Education, Ewha Womans University
- *7 Department of Physics, Korea University
- *8 Department of Physics, Tohoku University
- *9 **RIKEN** Nishina Center
- *10 School of Physics and Astronomy, University of Edinburgh
- $^{\ast 11}$ Institute of Physics, Vietnam Academy of Science and Technology
- *12 Graduate University, Vietnam Academy of Science and Technology
- *¹³ Department of Physics, Ewha Womans University
- *¹⁴ Division of Science Education, Chonbuk National University *15 Department of Physics, School of Natural Science, Ulsan National Institute of Science and Technology (UNIST)
- $^{\ast 16}$ Institute for Basic Science

Recoiling α particles were measured by two ΔE -E silicon detector telescopes located 430 mm downstream from the target entrance window, which enabled α particle identification using the standard energy loss technique. No significant contamination from other light charged particles was found. A background run with an 87-Torr Ar gas target was performed to see if the observed α particles originated from the desired reactions. Figure 1 shows a typical α energy spectrum. The black and red lines indicate the α energy spectra for the ⁴He and Ar gas targets, respectively. Relative counts are shown in the figure for comparison.

A detailed calibration and energy reconstruction will be performed to determine the precise α energy spectrum. The experimental excitation function of the ¹⁸Ne + α system will be extracted and compared with the theoretical R-matrix calculation.³⁾ The properties of populated energy levels such as excitation energies, spins, parities, and the α -reduced widths will be constrained for the α cluster structure information.

Fig. 1. Typical α spectrum. The black (red) line indicates the ⁴He (Ar) gas run. All data were normalized by beam intensity. The strong peak near 13 MeV represents leaky α particles that originated at the production target chamber.

References

- 1) M. Dufour and P. Descouvemont, Nucl. Phys. A 726, 53 (2003).
- 2) V. Z. Goldberg et al., Phys. Rev. C 69, 024602 (2004).
- 3) A. M. Lane and R. G. Thomas, Rev. Mod. Phys. 30, 257 (1958).