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The study of hadron-hadron scattering and reso-
nance properties using lattice QCD is a rapidly grow-
ing field.1) There are now many calculations of I = 1,
P -wave ππ scattering, in which the ρ resonance ap-
pears, but a number of questions remain open. For
example: Which models best describe the energy-
dependence of the phase shift? How large is the non-
resonant contribution? How exactly do mρ and gρππ
depend on the quark masses?

In this work, we have begun to address some of these
questions using a high-statistics calculation with 2+ 1
flavors of clover fermions at a pion mass of approxi-
mately 320 MeV. The lattice size was 323 × 96 with
a lattice spacing of a ≈ 0.114 fm; we constructed
the relevant hadronic correlation functions using a
method based on forward, sequential, and stochastic
quark propagators, which has a favorable volume scal-
ing compared with the distillation method introduced
in Ref. 2). We extracted the lowest two or three en-
ergy levels in eight different irreducible representations
with total momenta up to (1, 1, 1) 2πL , carefully study-
ing systematic uncertainties associated with the choice
of fit method and fit range in Euclidean time. The
ππ scattering phase shift values obtained from the lat-
tice energy levels using Lüscher’s method are shown in
Fig. 1.

We performed fits of several different models for the√
s-dependence of the phase shift: two purely reso-

nant Breit-Wigner models (without or with a Blatt-
Weisskopf barrier factor), as well as the combination of
these models with three different parameterizations of
a nonresonant contribution. The fit results for the non-
resonant contribution were consistent with zero. We
found that the minimal Breit-Wigner model
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which depends only on the two parameters mρ and
gρππ, was sufficient to describe our data. The curve
corresponding to this model is also shown in Fig. 1.
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Fig. 1. Lattice QCD results for the I = 1, P -wave ππ

scattering phase shift as a function of the ππ invari-

ant mass. The data points were obtained by apply-

ing Lüscher’s method individually to each energy level,

while the curve was obtained by fitting the parame-

ters of the minimal Breit-Wigner model directly to the

whole energy spectrum.

A comparison of lattice results for mρ at several dif-
ferent heavier-than-physical pion masses revealed sub-
stantial scale setting ambiguities. It is therefore better
to compare dimensionless ratios such as mρ/mN and
mπ/mN , where mN is the lattice result for the nucleon
mass from the same ensemble of gauge configurations.
Our calculation gives

mρ

mN
= 0.7476(38)(23) at

mπ

mN
= 0.2968(13), (2)

and gρππ = 5.69(13)(16). The most recent lattice re-
sults obtained with 2 + 1 flavors of clover fermions
(Refs. 3–5) along with this work) are consistent with
a linear dependence of mρ/mN on mπ/mN , with
mρ/mN reaching the experimental value at the physi-
cal pion mass.
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ΣN and ΛN interactions from 2 + 1 flavor lattice QCD with almost
physical masses
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Nuclear force and strangeness nuclear forces provide
an important starting point to understand how hyper-
nuclei are bound, in which hyperons (or strange quarks)
are embedded in normal nuclei as “impurities.” De-
termining how such a baryon-baryon (BB) interaction
is described from a fundamental perspective is a chal-
lenging problem in physics. Although a normal nucleus
is successfully described by utilizing the high precision
nucleon-nucleon (NN) potentials together with a three-
nucleon force a quantitatively same-level description of a
hypernucleus is still difficult because of the large uncer-
tainties of hyperon-nucleon (Y N) and hyperon-hyperon
(Y Y ) interactions; those Y N and Y Y potentials are not
well constrained from experimental data owing to the
short life time of hyperons. A recent experimental study
shows a tendency to repulsive Σ-nucleus interaction1)

and only a four-body Σ-hypernucleus (4ΣHe) is observed;
these results suggest a repulsive nature of the ΣN in-
teraction. Such quantitative understanding is useful to
study the properties of hyperonic matter inside neutron
stars, where the recent observations of a massive neu-
tron star heavier than 2M⊙ might raise a problem of
the hyperonic equation of state (EOS) employed in such
a study. Furthermore, better understanding of Y N and
Y Y is becoming increasingly important owing to the ob-
servation of the binary neutron star merger.

During the last decade a new lattice QCD approach
to study a hadron-hadron interaction was proposed. In
this approach, the interhadron potential is obtained by
means of the lattice QCD measurement of the Nambu-
Bethe-Salpeter (NBS) wave function. The observables
such as the phase shifts and the binding energies are cal-
culated by using the resultant potential. A large scale
lattice QCD calculation is now in progress2) to study the
baryon interactions from NN to ΞΞ by measuring the
NBS wave functions for 52 channels3) from the 2+1 fla-
vor lattice QCD by employing the almost physical quark
masses corresponding to (mπ,mK) ≈ (146, 525) MeV
and large volume (La)4 = (96a)4 ≈ (8.1 fm)4 with the
lattice spacing a ≈ 0.085 fm.

Figure 1 shows the scattering phase shifts of ΣN sys-
tem with isospin I = 3/2 obtained from the nearly physi-
cal point lattice QCD calculation through parametrized
analytical functions.2) The top left panel in the figure
shows the scattering phase shift in the 1S0 channel; the
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Fig. 1. Scattering (bar-)phase shifts and mixing angle of

the I = 3/2 ΣN system, δ(1S0) in the 1S0 state (up-

per left), and δ̄0 (upper right), δ̄2 (lower left), and ε̄1
(lower right) in the 3S1 −3 D1 states, obtained from the

nearly physical point lattice QCD calculation on a volume

(96a)4 ≈(8.1 fm)4 with the lattice spacing a ≈ 0.085 fm

and (mπ,mK) ≈ (146, 525) MeV through parametrized

analytical functions.2)

present result shows that the interaction in the 1S0 chan-
nel is attractive on average. The other three panels in
Fig. 1 show the bar-phase shifts and mixing angle in the
3S1 −3 D1 states, δ̄0 (upper right), δ̄2 (lower left), and
ε̄1 (lower right); the phase shift δ̄0 shows the interaction
is repulsive while the phase shift δ̄2 behaves around al-
most zero degree. The present results are qualitatively
consistent with group theoretical classification based on
a quark model which is useful for clarifying the general
behavior of various BB interactions in the S-wave; the
ΣN I = 3/2 3S1 −3 D1 belongs to 10 which is almost
Pauli forbidden while the ΣN I = 3/2 1S0 belongs to
27, which is the same as NN 1S0. The present S-wave
(dominated) phase shifts, the repulsive (attractive) be-
havior of δ̄0 (δ(1S0)), augur well for future quantitative
conclusions with larger statistics. Further calculations
to obtain physical quantities with increased statistics are
in progress and will be reported elsewhere.
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