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A conceptually simpler proof of the separability cri-
terion for two-qubit systems, which is referred to as
“Hefei inequality” in literature,1) is analyzed. This
inequality gives a necessary and sufficient separabil-
ity criterion for any mixed two-qubit system unlike
the Bell-CHSH inequality2,3) which cannot test mixed-
states such as the Werner state4) when regarded as
a separability criterion. The original derivation of
this inequality1) emphasized the uncertainty relation of
complementary observables; however, we show that the
uncertainty relation does not play any role in the actual
derivation and that the Peres-Hodrodecki condition5)

is solely responsible for the inequality. Our deriva-
tion, which contains technically novel aspects such as
an analogy to the Dirac equation, sheds light on this
inequality and on the fundamental issue of the to ex-
tent to which the uncertainty relation can provide a
test of entanglement. This separability criterion is il-
lustrated for an exact treatment of the Werner state.

Our starting point is the fact that the general pure
two-qubit states are brought to the standard form by
the Schmidt decomposition

|Φ⟩ = (u⊗ v)[s1|+⟩ ⊗ |−⟩ − s2e
iδ|−⟩ ⊗ |+⟩] (1)

with

|+⟩ =
(

1
0

)
, |−⟩ =

(
0
1

)
, (2)

and real numbers s21 + s22 = 1 and δ. Namely, the
states are parametrized by s1, s2, δ and two unitary
matrices u and v. It is then shown that this system is
represented formally in terms of a 4-dimensional Dirac
notation.

We then obtain the inequalities (separability crite-
rion)

⟨P−⟩2ρ ≥ ⟨γ3γ0P−⟩2ρ + ⟨γ2γ0P−⟩2ρ + ⟨γ1γ0P−⟩2ρ,
⟨P+⟩2ρ ≥ ⟨γ3γ0P+⟩2ρ + ⟨γ2γ0P−⟩2ρ + ⟨γ1γ0P−⟩2ρ, (3)

where P± = (1± γ5)/2 and

⟨γ3γ0P±⟩ρ ≡ Trγ3γ0P±ρ, (4)

for example, using the Peres-Horodecki criterion with-
out referring to the uncertainty relations.

As for the test of the Werner state4) which is defined
by

ρw =
1

4
(1− β)1+ β|ψs⟩⟨ψs| (5)
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with the singlet state |ψs⟩ = (1/
√
2)[|+⟩|−⟩ − |−⟩|+⟩],

we obtain

1 ≥ β + 2β. (6)

We thus conclude that the separability condition of the
Werner state is equivalent to

β ≤ 1

3
, (7)

which agrees with the result of a more explicit analysis
of ρw.

4) This in particular implies that β > 1
3 stands

for an inseparable state.
We have re-analyzed one of the representative in-

equalities proposed in Ref. 1) and have shown that
the uncertainty relations cannot be alternative to the
Peres-Horodecki condition in the analysis of entangle-
ment for general two-qubit systems. The “Hefei in-
equality,” however, stands for a rare algebraic criterion
that is applicable to any mixed state that cannot be
tested by the Bell-CHSH inequality in general,2,3) as
was illustrated by an exact treatment of the Werner
state.

Here, in comparison with the criterions of separabil-
ity of two-qubit systems, we briefly mention a corre-
sponding test of the separability of systems with two
continuous degrees of freedom.6–8) In the problem of
two-party continuum case with two-dimensional con-
tinuous phase space freedom (p, q) in each party, it is
possible to re-formulate the problem such that8)

(1) the uncertainty relation leads to a necessary con-
dition for separable two-party systems,

(2) the derived condition is sufficient to prove the
separability of two-party Gaussian systems.

Namely, the uncertainty relation without referring
to the Peres-Horodecki criterion5) provides a neces-
sary and sufficient separability condition for two-party
Gaussian systems.
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Empirical formulae of the masses of elementary particles

Y. Akiba∗1

particle formula calculated(c) measured(m) |c/m− 1|
e 1/(12π2)ϵ

1/3
0 (1 + (1/4)(1/(6π)2))−1Mpl 0.511002 MeV 0.510998946± 0.0000000031 MeV 5.9× 10−6

µ 3/2ϵ
1/3
0 (1− 1/(2π) + 3/(4π)2)−1Mpl 105.6594 MeV 105.6583745± 0.0000024 MeV 9.6× 10−6

τ 9πϵ
1/3
0 (1− 1/(8π) + (5/4)(1/(6π)2))−1Mpl 1.77684 GeV 1.77686± 0.12 GeV 1.9× 10−5

t 8× (6π)2ϵ
1/3
0 Mpl 172.1 GeV 173.4± 0.75 GeV 7.5× 10−3

c 12ϵ
1/3
0 Mpl 1.24 GeV 1.28± 0.025 GeV(MS at mc) 3.4× 10−2

u 8× (6π)−2ϵ
1/3
0 Mpl 2.07 MeV 2.15± 0.15 MeV (MS at 2 GeV) 3.8× 10−2

b 3× 2−1/12(6π)ϵ
1/3
0 Mpl 4.33 GeV 4.18± 0.03 GeV(MS at mb) 3.6× 10−2

s ϵ
1/3
0 Mpl 91.8 MeV 93.8± 2.4 MeV (MS at 2 GeV) 2.1× 10−2

d (6π)−1ϵ
1/3
0 Mpl 4.87 MeV 4.7± 0.2 MeV (MS at 2 GeV) 3.6× 10−2

Z 1/(8π2)ϵ
1/4
0 (1 + (1/11)(1/(2π)2))−1Mpl 91.1883 GeV 91.1876± 0.0021 GeV 7.4× 10−6

W 2−1/4/(8π2)ϵ
1/4
0 (1− (19/11)(1/(2π)2))−1Mpl 80.373 GeV 80.385± 0.015 GeV 1.9× 10−4

H 21/2/(8π2)ϵ
1/4
0 (1 + (14/11)(1/(2π)2))−1Mpl 125.22 GeV 125.1± 0.2 GeV 1.0× 10−3

I report emprical formulae of the masses of charged
leptons (e, µ, τ), quarks (t, c, u, b, s, d), gauge bosons
(Z,W ), and Higgs boson (H). The formulae yield the
masses in terms of the Planck mass Mpl and a dimen-
sionless constant ϵ0 = 2 × (6π)−48. There is no ad-
justable parameter in the formulae.
The mass values calculated using the formulae are

compared with measured values. For the calculation,
the value of Planck mass from CODATA1) is used:

Mpl = 1.220910± 0.000029× 1019 GeV.

The measured values of particle masses are taken from
PDG2016.2) The mass of a quark is dependent on the
scale and the scheme. In the PDG review, the mass
of quarks other than the t quark are given in the MS
scheme at µ = 2 GeV for the u, d, s quarks and at
µ = mq for the b and c quarks. For the t quark, the
measured mass is considered to be the pole mass. The
formula for a quark is assumed to yield the MS mass
at the Z boson mass mZ . The first-order renormalized
group equation (RGE) below is used to correct for the
mass value at mZ to the mass at the scale the PDG
uses:

m(t)

m0
= exp

(
−
∫

αs(t)

π
dt

)
,

where t = logµ2 and αs(t) is the running QCD cou-
pling constant at the scale µ. The value of αs(t) in the
PDG2016 review is used for the calculation.
The formulae, the calculated values (c) using the

formulae, the measured values (m), and difference
|c/m − 1| are summarized in the table above. The
calculation reproduce the measured mass values well.
The agreement is within the uncertainty of the mea-
sured mass or the Planck mass (2.4× 10−5).
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There is a pattern in the formulae. The formulae
can be summarized as

ml =
1

2
Nl(6π)

nlϵ
1/3
0 (1 + δl)

−1Mpl,

mq = 2cqNq(6π)
nqϵ

1/3
0 Mpl,

mB =
2cB

8π2
ϵ
1/4
0 (1 + δB)

−1Mpl,

where ml, mq, and mB are the masses of charged lep-
tons, quarks, and bosons, respectively. Nl and Nq are
small positive integers, nl and nq are integers ranging
from −2 to 2, and δl and δB are small real numbers.
cb = −1/12 and cq = 0 for all other quarks, and cZ = 0,
cW = −1/4, and cH = 1/2. The pattern suggests the
existence of a rule that determines the formulae. Note
that all fermion masses are order of (6π)nf ϵ

1/3
0 with

−2 ≤ nf ≤ 2 and the boson masses are of the order

of 1/8π2ϵ
1/4
0 . Presumaby, this part is the main part

of the mass, and (1 + δl) and (1 + δB) are correction
factors due to interactions.
Note that the value of ϵ0 is consistent with the prod-

uct of the Hubble constant H0 and the Planck time
tpl = 1/Mpl:

H0 × tpl = (1.211± 0.014)× 10−61

ϵ0 ≡ 2× (6π)−48 = 1.220608× 10−61

Here, the WMAP 9 year value of H0 is used. This
suggests that the masses of elementary particles are
related to the expansion of space-time.
A theoretical model that can explain these formulae

is under development.
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