## Origin of the fake eigen energy of the two-baryon system in lattice $QCD^{\dagger}$

## T. Iritani $^{\ast 1}$ for HAL QCD Collaboration

Both the direct and HAL QCD methods are used to study two-hadron systems in lattice QCD. In previous studies for large pion masses,<sup>2)</sup> the direct method showed that both dineutron and deuteron are bound. However, the HAL QCD method suggests that these are unbound. In the series of papers,<sup>3,4)</sup> we pointed out that these discrepancies originate from the misidentification of the ground state in the direct method due to the scattering states,<sup>3)</sup> which can be revealed by some simple tests using Lüscher's finite volume formula.<sup>4)</sup>

In the direct method, one measures the energy eigenvalue. It is estimated by the plateau value of the effective energy shift, which is given by

$$\Delta E_{\rm eff}(t) \equiv \frac{1}{a} \log \left[ \sum_{\vec{r}} R(\vec{r}, t) \right] \Big/ \left[ \sum_{\vec{r}} R(\vec{r}, t+a) \right]$$
(1)

using the R-correlator

$$R(\vec{r},t) \equiv \frac{\langle 0|T\{B(\vec{x}+\vec{r},t)B(\vec{x},t)\}\overline{\mathcal{J}}(0)|0\rangle}{\{C_B(t)\}^2}, \qquad (2)$$

where  $\mathcal{J}(B)$  is a source(sink) operator and the baryon propagator  $C_{\rm B}(t) \equiv \langle B(t)\bar{B}(0)\rangle$ . It converges to the ground state energy at a large time, where the ground state is saturated. For example, the inelastic state becomes negligible around 1 fm, while the elastic excitation in the two-baryon system remains even around  $\mathcal{O}(10)$  fm, which causes a fake plateau-like structure around 1.5 fm in the actual calculations.

Such a fake plateau problem can be checked by the source dependence.<sup>3)</sup> Figure 1 shows the effective energy shift of  $\Xi\Xi(^{1}S_{0})$  at  $m_{\pi} = 0.51$  GeV using the wall and the smeared sources. There is a plateau-like structure around  $t \sim 15a \simeq 1.5$  fm, but it depends on the source, which means either (or both) of the results is fake.

Since the time-dependent HAL QCD method uses both the ground and the scattering states simultaneously to extract the interaction, it does not require the ground-state saturation. In this method, the potential is defined from the R-correlator, and some systematic uncertainties are shown to be under control.<sup>1)</sup>

Using the correct eigen energies  $\Delta E_n$  and eigenfunction  $\Psi_n(r)$ , which are obtained by solving  $H \equiv H_0 + V(r)$  with the HAL QCD potential V(r) in the finite box, the *R*-correlator is expanded by

$$\frac{R(\vec{p}=0,t)}{\sum_{\vec{r}}\sum_{n}a_{n}\Psi_{n}(\vec{r})e^{-\Delta E_{n}t}} = \sum_{n}b_{n}e^{-\Delta E_{n}t} (3)$$



Fig. 1. The effective energy shift using the wall and the smeared source for  $\Xi\Xi(^{1}S_{0})$  at  $m_{\pi} = 0.51$  GeV. The lattice size L = 48 with the lattice spacing  $a \simeq 0.09$  fm.



Fig. 2. Reconstructed  $\Delta E_{\text{eff}}(t)$  and its convergence.

The contamination coefficients  $b_n$  are determined from the orthogonality of  $\Psi_n(\vec{r})$ .

Figure 2 shows the  $\Delta E_{\text{eff}}(t)$  reconstructed using a low-lying  $b_n$  and  $\Delta E_n$ , which well reproduces the fake plateau. The ground-state saturation of the smeared source is estimated to be around  $t \sim 100a \sim 10$  fm at L = 48. This result proves the advantages of the HAL QCD method, and the direct measurement of the two-baryon system is not practical.

References

- T. Iritani for HAL QCD Coll., EPS Web Conf. 165, 05008 (2018).
- 2) T. Yamazaki, PoS LATTICE 2014, 009 (2015).
- T. Iritani for HAL QCD Coll., J. High Energy Phys. 1610, 101 (2016).
- T. Iritani for HAL QCD Coll., Phys. Rev. D 96, 034521 (2017).

<sup>&</sup>lt;sup>†</sup> Condensed from the article in Proceedings for the 35th International Symposium on Lattice Field Theory<sup>1)</sup>

<sup>\*1</sup> RIKEN Nishina Center