Delay-line Anode for MCP-based Position Sensitive Detector at Rare RI Ring

H. F. Li,^{*1,*2,*3,*4} Z. Ge,^{*1,*5} S. Naimi,^{*1} D. Nagae,^{*1} Y. Abe,^{*1} T. Uesaka,^{*1} T. Yamaguchi,^{*1,*5,*6} F. Suzaki,^{*1}
Y. Yamaguchi,^{*1} M. Wakasugi,^{*1} S. Omika, ^{*1,*5} K. Wakayama,^{*5} H. Arakawa,^{*5} A. Ozawa,^{*1,*6} S. Suzuki,^{*1,*6} and T. Moriguchi^{*1,*6}

Rare RI Ring¹ (R3) is a newly developed mass spectrometer for the measurement of exotic nuclei with a high precision of 10^{-6} . In order to achieve this goal, beam diagnostics need to be on the beam line (including BigRIPS, SHARAQ, and R3 injection)¹⁾ for several reasons: (1) velocity measurement with a precision of 10^{-4} is needed for mass determination;²⁾ (2) in order to improve the transport efficiency, emittance matching should be applied, which requires emittance measurement before the ring.^{3,4} To achieve a precision of 10^{-4} for the velocity measurement, new position sensitive detectors with energy loss as low as 10^{-5} are needed, which cannot be achieved by conventional PPAC. High position resolution (< 1 mm) and high efficiency ($\sim 100\%$) are also needed. For these detectors, it is very important to use position sensitive anodes for collecting the secondary electrons. To achieve high position resolution, we chose 2D delay-line anode for Micro-Channel-Plate (MCP) based detectors. The result of the calibration and position resolution of the anode is shown in this report.

A mask with several holes (the size of the holes were 1 mm and 0.5 mm in diameter) was placed on the MCP, whose active area had a diameter of 120 mm, as illustrated in Fig. 1. We used the vacuum gauge as

Fig. 1. Principle of the MCP with 2-D delay line anode; the MCP was placed in vacuum $(3.5 \times 10^{-3} \text{ Pa})$.

- *1 RIKEN Nishina Center, RIKEN
- *² Institute of Modern Physics, Chinese Academy of Sciences
- *³ School of Nuclear Science and Technology, Lanzhou University
- ^{*4} University of Chinese Academy of Sciences
- *5 Department of Physics, Saitama University
- *6 Institute of Physics, University of Tsukuba

Fig. 2. (a) Image produced by the electrons that pass through the mask's holes and hit the MCP; (b), (c) Accuracy of the points in slice I and II in (a) by using linear and quadratic functions; the error bar represents the σ of the peak.

the source of electrons to calibrate the position of the anode. For each dimension of the delay-line anode, the sum of the times from the two ends, T_{sum} , should be constant, see Fig. 1. We chose 3σ of $T_{\rm sum}$ as a gate to cut the noise signal in both dimensions. The time information of each hole was obtained by projecting the points in the X axis and Y axis, and by fitting it using the Gauss function. It is not possible to use a linear function to calibrate the relationship between the time and position. Therefore, a quadratic function is chosen since it has a higher accuracy as shown in Fig. 2(b)(c). The position information of the holes after calibration is shown in Fig. 2(a). For holes with a diameter of 1 mm, the resolution in both the x and y directions is smaller than 0.6 mm in σ , which is required for highresolution position sensitive detector.

An MCP with a delay-line anode that has a resolution smaller than 0.6 mm in σ is adequate for a position sensitive detector. One detector has already been developed and is under testing.⁵⁾ In the coming years, other position sensitive detectors with the same delay-line anode will be developed.

References

- A. Ozawa *et al.*, Prog. Theor. Exp. Phys. **2012**, 03C009 (2012).
- 2) D. Nagae *et al.*, in this report.
- 3) Y. Yamaguchi et al., in this report.
- 4) S. Naimi *et al.*, in this report.
- 5) Z. Ge et al., Accel. Prog. Rep. 50, 187 (2017).