DALI2+ at the RIKEN Nishina Center RIBF

I. Murray,^{*1,*2} F. Browne,^{*2} S. Chen,^{*3,*2} M. L. Cortés,^{*2} P. Doornenbal,^{*2} H. Sakurai,^{*2,*7} J. Lee,^{*4} M. MacCormick,^{*1} W. Rodriguez,^{*5} V. Vaquero,^{*6} D. Steppenback,^{*2} and K. Wimmer^{*7}

The utilization of large arrays of sensitive γ -ray detectors in combination with fast beams and a reaction target, is a powerful approach to interrogate nuclear structure.¹⁾ This technique, known as in-beam γ ray spectroscopy and often in association with additional particle detectors, permits access to observables such as excited state energies, transition probabilities, exclusive and differential cross-sections, deformation lengths and parameters, state lifetimes and exclusive parallel momentum distributions. Highlights of RIKEN in-beam γ ray spectroscopy results can be found in the references.^{2–4)}

The Detector Array for Low Intensity Radiation (DALI) was constructed in 1995 for observing nuclear reactions with a low yield.⁵⁾ DALI originally consisted of $60.6 \times 6 \times 12$ cm³ thallium-doped sodium iodide (NaI(Tl)) scintillators arranged around a reaction target to cover a large solid angle. The granularity of the detector array permitted a correction to the Doppler shifted γ -rays at RI beam velocities of $v/c \sim 0.3$.

DALI was supplemented with additional NaI(Tl) detectors up to a total of 186 in $2002^{6)}$ and renamed DALI2. With the opening of the RIBF facility, where the RI beam velocities are $v/c \sim 0.6$, DALI2's greater angular resolution and detection efficiency was integral to its continuing success.

In the spring of 2017, DALI2 was further upgraded to DALI2+ by the inclusion of additional new detectors to the array, bringing the total to 226. Poorly performing older detectors were substituted. A rendering of the new arrangement is shown in Fig. 1. Additional support structures were fabricated to accommodate the new detectors. The simulated full-energy-peak efficiency (FEP) and inherent energy resolution of the DALI2 and DALI2+ configurations for various photon energies (in a centre-of-mass (CM) frame) are listed in Table 1. The beam pipe, shield, target thickness, beam velocity distribution and individual detector resolutions are not included in the simulations. The γ -rays are emitted isotropically in the CM frame and Doppler corrected. The small reduction in FEP efficiency of the DALI2+ configuration is a consequence of the reduced angular coverage. The smaller opening angles of the detectors lead to an increase in inherent energy resolution because of Doppler correction.

DALI2+ was employed for the first time for the third SEASTAR campaign.⁷⁻⁹ It surrounded the liquid hy-

- *⁵ Universidad Nacional de Colombia
- ^{*6} Instituto de Estructura de la Materia, CSIC

Fig. 1. A 3D rendering of the half sector of DALI2+.

Table 1. GEANT4 simulated FEP efficiencies and inherent energy resolution of the DALI2 and DALI2+ arrays. (without add-back / with 15 cm radius add-back⁶)

	$\mathbf{v}/\mathbf{c} = 0$	v/c	$ $ $\mathbf{v/c} = 0.6$	
\mathbf{E}_{γ} (MeV)	eff. (%)	eff. (%)	FWHM (keV)	
DALI2 & standard target position				
0.5	41/48	42/51	38/43	
1.0	25/33	25/36	76/85	
2.0	14/20	15/25	150/161	
$DALI2+ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$				
0.5	37/43	40/48	38/43	
1.0	22/29	24/34	76/85	
2.0	13/19	15/23	139/155	
DALI2+ & MINOS target position				
0.5	36/42	39/48	36/41	
1.0	22/29	24/34	72/80	
2.0	12/18	14/23	138/146	

drogen target of MINOS¹⁰ which was situated between BigRIPS¹¹ and SAMURAI¹² spectrometers.

References

- 1) P. Doornenbal, Prog. Theor. Exp. Phys. 2012, 1 (2012).
- D. Steppenbeck *et al.*, Nature (London) **502**, 7470 (2013).
- 3) T. Nakamura et al., Phys. Rev. Lett. 96, 25 (2006).
- 4) T. Motobayashi et al., Phys. Lett. B 346, 1 (1995).
- T. Nishio *et al.*, RIKEN Accel. Prog. Rep. **29**, 184 (1996).
- S. Takeuchi *et al.*, Nucl. Instrum. Methods Phys. Res. A 763 (2014).
- 7) S. Chen *et al.*, in this report.
- 8) M. L. Cortés *et al.*, in this report.
- 9) H. N. Liu *et al.*, in this report.
- 10) A. Obertelli et al., Eur. Phys. J. A 50, 8 (2014).
- 11) T. Kubo et al., PTEP **2012**, 1 (2012).
- T. Kobayashi *et al.*, Nucl. Instrum. Methods B Phys. Res. **317B** (2013).

^{*1} IPNO, CNRS, Univ. Paris-Sud, Univ. Paris-Saclay

^{*&}lt;sup>2</sup> RIKEN Nishina Center

^{*&}lt;sup>3</sup> Department of Physics, Peking University

^{*4} Department of Physics, The University of Hong Kong

^{*7} Department of Physics, University of Tokyo