Improved method for preparation of no-carrier added ²⁸Mg tracer

H. Kikunaga, *1,*2 H. Haba, *2 Y. Komori, *2 and S. Yano *2

Magnesium is involved in important physiological activities such as many enzymatic reactions. The isotope ${}^{28}Mg$, which has the longest half-life (21.6 h¹) among radioactive magnesium isotopes, is useful in biological sciences as a radioactive tracer.^{2,3} We plan to provide a no-carrier added ²⁸Mg tracer produced in the ${}^{27}\text{Al}(\alpha, 3p)$ reaction to applicants through, for example the Supply Platform of Short-lived Radioisotopes for Fundamental Research. In a precious paper⁴⁾ we attempted to separate ²⁸Mg from an Al target, focusing on reducing waste radioactive materials. However, there was an unwanted problem that the obtained tracer contained nuclide ⁷Be. In this work, we report an improved method for the preparation of nocarrier-added ²⁸Mg tracer in addition to the procedure of beryllium elimination.

Magnesium-28 was produced at either the RIKEN K70 AVF Cyclotron or the AVF Cyclotron at CYRIC, Tohoku University. The target stack of 7 Al foils (99.9% pure) with a thickness of 100 μ m was irradiated with an α -particle beam with a beam energy of 50 MeV and a mean current of approximately 3 μ A.

First, the conditions for the separation of ²⁸Mg from ⁷Be were searched for. The irradiated Al targets were dissolved in 12 M (mol/dm³) HCl. A portion of it, containing 0.1 mmol of Al and trace amounts of ⁷Be, ²⁴Na, and ²⁸Mg, was heated to dryness and adjusted to 0.5 M oxalic acid. The solution was passed through a cation exchange column (Muromac 50 W×8, 100–200 mesh, 1 mL), which adsorbs Al(III), ⁷Be,²⁴Na, and ²⁸Mg ions, following which the resin was washed with 7 mL of 0.5 M oxalic acid to eliminate Al(III) and 5 mL of 0.2 M HF. The elution curves of the cation-exchange separation is shown in Fig. 1. The ⁷Be ions are eluted completely within 5 mL of 0.2 M HF, whereas the ²⁴Na and ²⁸Mg ions are retained onto the column.

Next, the procedure to eliminate ⁷Be was incorporated into the previous procedure.⁴⁾ The improved chemical scheme is shown in Fig. 2. The irradiated Al targets were dissolved in 9 M HCl and then diluted with water to 15 mL. The ²⁸Mg isotopes were co-precipitated with iron hydroxide by adding 2 mg of Fe(III) and 15 mL of 6 M NaOH and separated from Al, Na, and Be ions. The precipitation of iron hydroxide was dissolved in 9 M HCl. The solution was passed through an anion exchange resin column (Muromac 1×8, 100–200 mesh, 1 mL), which adsorbs Fe(III) ions, and the resin was washed with additional 9 M HCl. The eluate was heated to dryness and adjusted to

0.5 M oxalic acid. The solution was passed through a cation exchange resin column (Muromac 50W×8, 100–200 mesh, 1 mL) to adsorb $^{28}\rm{Mg}$ isotopes. The resin was washed with 0.2 M HF for Be elimination, 0.5 M oxalic acid for Al elimination, and 0.5 M HCl for Na elimination. The $^{28}\rm{Mg}$ isotopes were eluted from the column with 2 M HCl.

The chemical yield of the separation procedure, determined by γ -spectrometry of ²⁸Mg, was approximately 85% and radioactivity other than ²⁸Mg was not detected in the Mg fraction.

Fig. 1. Elution curves for the cation exchange separation of Be, Na, and Mg.

Fig. 2. Chemical procedure for the preparation of no-carrier added $^{28}\mathrm{Mg}$ tracer.

References

- R. B. Firestone, V. S. Shirley, *Table of Isotopes*, 8th ed. (John Wiley and Sons, New York, 1996).
- 2) C. Schimansky, J. Plant Nutr. 8, 467 (1985).
- 3) K. Tanoi et al., Plant Soil 384, 69 (2014).
- H. Kikunaga *et al.*, RIKEN Accel. Prog. Rep. **50**, 260 (2017).

^{*1} Research Center for Electron Photon Science, Tohoku University

^{*&}lt;sup>2</sup> RIKEN Nishina Center