Production of no-carrier-added barium tracer of ^{135m}Ba

S. Yano,^{*1} H. Haba,^{*1} Y. Komori,^{*1} T. Yokokita,^{*1} and K. Takahashi^{*1}

The long-lived ¹³³Ba isotope (half-life $T_{1/2} = 10.51$ y) is the only Ba isotope commercially available from Japan Radioisotope Association. Since ¹³³Ba is produced at a nuclear reactor, its specific radioactivity is low with a typical value of approximately 0.5 MBq μ g⁻¹. Barium-135m with $T_{1/2} = 28.7$ h can be produced from the ¹³³Cs $(\alpha, x)^{135m}$ Ba reaction by using a cyclotron. Barium-135m emits a single 268.2-keV γ -ray, which would be useful for radiotracer studies of Ba, especially for single- photon-emission computed tomography (SPECT).¹⁾ In this work, we investigated a procedure to produce ^{135m}Ba of high specific radioactivity by using the ¹³³Cs $(\alpha, x)^{135m}$ Ba reaction and no-carrier-added chemical separation.

CsCl powder (Sigma-Aldrich; chemical purity >99.999%) was pressed into a disk of 10-mm diameter and 240-mg cm⁻² thickness at a pressure of 2×10^3 kg $\rm cm^{-2}$ for 3 min. The CsCl pellet covered with a 10- $\mu \rm m$ Al foil (chemical purity > 99.99%) was placed on a target holder. The target was irradiated for 30 min with a 50-MeV alpha beam having an intensity of 3.0 μ A at the RIKEN AVF cyclotron. During the beam irradiation, the target was cooled with circulating helium gas (30 Lmin^{-1}) and water (1.5 Lmin^{-1}) . The beam axis was continuously rotated in a circle of diameter approximately equal to 2 mm at 2 Hz to avoid local heating of the target by using electromagnets on the beam line of the RIKEN AVF cyclotron. After the irradiation, ^{135m}Ba was chemically separated from the target material and by-products such as 135 La and 132 Cs by using a chromatography column filled with the Eichrom Sr $resin^{2}$ (Fig. 1). The radioactivity and radionuclidic purity of the purified 135m Ba were determined by γ -ray spectrometry using a Ge detector. The chemical purity and specific radioactivity were evaluated by chemical analysis using an inductively coupled plasma mass spectrometer (ICP-MS). The γ -ray spectrum of the purified ^{135m}Ba is shown in Fig. 2. Only Ba isotopes of ¹³¹Ba, ¹³³Ba, ¹³³mBa, and ^{135m}Ba were identified. The radioactivity of $^{135\mathrm{m}}\mathrm{Ba}$ was determined to be 2.25 MBq at the end of bombardment (EOB). The chemical yield of ^{135m}Ba was greater than 96%. Decontamination factors of 135 La and 132 Cs from 135m Ba were evaluated to be 103 and 105, respectively. The radionuclidic purity of ^{135m}Ba was approximately 68% at the EOB. The major radionuclidic impurity was ¹³³mBa ($T_{1/2}$ = 38.9 h) which was produced in the ${}^{133}Cs(\alpha, x){}^{133}mBa$ reaction. Referring to the excitation functions for the 133 Cs $(\alpha, x)^{135m}$ Ba and 133 Cs $(\alpha, x)^{133}$ mBa reactions in the TENDL-2015 library,³⁾ it is expected that the radionuclidic purity of ^{135m}Ba can be increased at lower beam energies. In the ICP-MS analysis, only Cu (1280 ng), U (160 ng), Zn (140 ng), and Ba (100 ng)

Fig. 1. Chemical separation procedure of $^{135\mathrm{m}}\mathrm{Ba}$ from the CsCl target.

Fig. 2. γ -ray spectrum of purified ^{135m}Ba.

were detected among the elements having atomic number $Z \ge 20$ in the purified $^{135\text{m}}\text{Ba}$ with a contamination level > 100 ng. The specific radioactivity of $^{135\text{m}}\text{Ba}$ was then 23 MBq μg^{-1} at the EOB. This specific radioactivity is two orders of magnitude larger than that of the commercial ^{133}Ba .

Based on the present results, we estimate that approximately 80 MBq of the no-carrier-added $^{135\rm m}{\rm Ba}$ could be produced after 24-h irradiation of the 240-mg cm $^{-2}$ CsCl target with the 50-MeV and 3- $\mu{\rm A}$ alpha beam. The expected specific radioactivity is approximately 830 MBq $\mu{\rm g}^{-1}.$

References

- 1) R. P. Spencer et al., J. Nucl. Med. 12, 216 (1971).
- 2) E. P. Horwitz et al., Solvent Extr. Ion Exc. 10, 313 (1992).
- A. J. Koning, D. Rockman, Nucl. Data Sheets 113, 2841 (2012).

^{*1} RIKEN Nishina Center