99 Ru Mössbauer spectroscopy of Na-ion batteries of Na₂RuO₃ (IV)

K. Takahashi,^{*1} Y. Kobayashi,^{*1,*2} H. Haba,^{*2} and H. Ueno^{*2}

Na₂RuO₃ with a two-dimensional layered structure of $[RuO_3]2^-$ is expected as an electrode material for next-generation Na-ion batteries.¹⁻³ Until now, we have studied the crystal structures and oxidation states of Ru ions in Na₂RuO₃ and Na-Ru oxides with different ratios of Na/Ru using X-ray diffraction patterns and ⁹⁹Ru Mössbauer spectroscopy. It was revealed that the structures changed from two-dimensional to three-dimensional properties with Na deficiencies. In this paper, we report the result of the chemical states of Ru ion in Na₂RuO₃ observed before and after a charging experiment. A sample of Na₂RuO₃ was prepared through a solid-state reaction. A mixture of RuO_2 and NaHCO₃ was pressed and sintered at 850 °C for 12 h in Ar atmosphere. 95 wt% of Na_2RuO_3 was mixed with $5~{\rm wt}\%$ of a morphous carbon powder, and pressed to create a pellet for electrochemical measurements. The pellet sample and carbon rod were used as a cathode and an anode, respectively. 1 mol/L NaPF_6 in ethylene carbonate and diethyl carbonate (1:1 by volume) was used as an electrolyte. The charging experiment, which was an anodic process (Na⁺ de-intercalation), was conducted at 20 mA/g and 4.0 V for 0.5 h and 2.0 h in an Ar-filled glove box. After the charging experiment, the Na₂RuO₃ electrode was washed with anhydrous dimethyl carbonates and then dried in a vacuum desiccator. For ⁹⁹Ru Mössbauer spectroscopy, the ⁹⁹Rh ($T_{1/2} = 15.0$ d) of the source nuclide was produced by the 99 Ru $(p, n)^{99}$ Rh reaction in an AVF cyclotron. ⁹⁹Ru Mössbauer spectra were obtained by employing a conventional arrangement with the source and absorber maintained at 4.2 K in a liquid He cryostat.^{4,5)} The XRD pattern of Na₂RuO₃ after the charging experiment showed that interlayer distance was significantly decreased from 5.45(1) Å to 5.18(3) Å. It was indicated that Na⁺ ions were extracted from the [Na_{1/3}Ru_{2/3}]O₂ layers. The ⁹⁹Ru Mössbauer spectrum of Na_2RuO_3 after charging for 0.5 h showed two doublet peaks, as shown in Fig. 1. The spectrum was analyzed by D1 with an isomer shift (δ) of -0.32(1) mm/s and a quadrupole splitting (ΔE_{Ω}) of 0.28(2) mm/s and D2 with δ = +0.20(5) mm/s and $\Delta E_{\rm Q} = 1.52(8)$ mm/s. The ratio of absorption intensities was D1:D2 = 85:15. The isomer shift of D2 is a typical value of $\mathrm{Ru}^{5+},$ for example, $+0.19~\mathrm{mm/s}$ for Ca_2EuRuO_6 and +0.11 mm/s for Na_3RuO_4 . It was found that the de-intercalation of Na⁺ ions increased the oxidation state of the Ru ion from Ru^{4+} to Ru^{5+} and significantly distorted the octahedron of RuO_6 . Further details of the electronic structure of Ru ions

in Na_2RuO_3 for the electrochemical procedure will be discussed with density functional calculations.

Fig. 1. 99 Ru Mössbauer spectrum of Na₂RuO₃ used as a cathode after charging (20 mA/g, 4.0 V) for 0.5 h. The blue and green lines correspond to components of D1 and D2, respectively. The spectrum was measured at 5.0 K.

References

- K. M. Mogare *et al.*, Z. Anorg. Allg. Chem. **630**, 547 (2004).
- M. Tamaru *et al.*, Electrochem. Commun. **33**, 23 (2013).
- B. M. de Boisse *et al.*, Nat. Commun. 7, 11397, 10.1038/ncomms11397 (2016).
- K. Takahashi *et al.*, RIKEN Accel. Prog. Rep. 49, 242 (2015).
- 5) Y. Kobayashi et al., J. Phys. 217, 012023 (2010).

^{*1} Dep. of Eng. Sci., University of Electro-Commun.

^{*&}lt;sup>2</sup> RIKEN Nishina Center