Discovery of new isotopes 81,82Mo and 85,86Ru and a determination of the particle instability of 103Sb

H. Suzuki,† T. Kubo,‡ N. Fukuda,‡ N. Inabe,‡ D. Kameda,‡ H. Takeda,‡ K. Yoshida,‡ K. Kusaka,‡ Y. Yanagisawa,‡ M. Ohtake,‡ H. Sato,‡ Y. Shimizu,‡ H. Baba,‡ M. Kurokawa,‡ K. Tanaka,‡ O. B. Tarasov,‡ D. P. Bazin,‡ D. J. Morrissey,‡ B. M. Sherrill,‡ K. Ieki,‡ D. Murai,‡ N. Iwasa,‡ A. Chiba,‡ Y. Ohkoda,‡ E. Ideguchi,‡ S. Go,‡ R. Yokoyama,‡ T. Fujii,‡ D. Nishimura,‡6 H. Nishibata,‡7 S. Momota,‡8 M. Lewitowicz,9 G. DeFrance,9 I. Celikovic,9 and K. Steiger10

We discovered four new isotopes, 81,82Mo and 85,86Ru, using the BigRIPS separator1 at the RIKEN RI Beam Factory. Furthermore, we obtained the first clear evidence for the particle instability of 103Sb. The upper limits of the half-lives of particle-unbound isotopes 81Nb, 85Te, and 103Sb were deduced.

Proton-rich radioactive isotopes (RI) were produced from a 345-MeV/nucleon 8–9 pnA 124Xe$^{52+}$ beam impinged on a 4-mm-thick Be target by projectile fragmentation. Two BigRIPS settings were conducted; one is 85Ru setting for producing the RIs with atomic numbers $Z = 42–44$, and the other is 105Te setting for $Z = 51–53$. We performed particle identification (PID) by deducing Z and the mass-to-charge ratio, A/Q, of the fragments based on the TOF-B_P-ΔE method in the second stage of the BigRIPS.2

In the 85Ru setting, four new isotopes 81,82Mo and 85,86Ru were observed as shown in Fig. 2 of the original article1. The numbers of the observed counts were 1, 6, 1, and 35, respectively. To confirm the existence of the new isotopes, mass number, A, and charge number, Q, were deduced from TOF and TKE measured between the F7 and F12 foci downstream of the BigRIPS. Figure 1 shows the Z vs $A – 2Q$ plot, in which the fully stripped events were selected. The new isotopes were clearly observed again. This re-identification strongly reinforces the discovery of the new isotopes especially for 81Mo and 85Ru, which were observed only 1 count each.

The Z vs A/Q PID plot of 105Te setting is shown in Fig. 2. No new isotopes were observed in this setting. 103Sb was not observed, although the other $N – Z = +1$ isotopes, 99In, 101Sn, and 105Te, were clearly observed, indicating the particle instability of 103Sb. The upper limit of the half-life of 103Sb was deduced from its expected production-yield based on the yield systematics of neighboring isotopes and the TOF between the target and the F7 focus. Assuming the observation limit of 1 count, the upper limit of its half life was deduced to be 46 ns.

The upper limits of the half-lives of 81Nb and 85Te were deduced to be 40 and 43 ns, respectively.

References

‡ RIKEN Nishina Center
‡ National Superconducting Cyclotron Laboratory, Michigan State University
‡ Department of Physics, Rikkyo University
‡ Department of Physics, Tohoku University
‡ Center for Nuclear Study, University of Tokyo
‡ Department of Physics, Tokyo City University
‡ Department of Physics, Osaka University
‡ School of Environmental Science and Engineering, VNU Hanoi University of Technology
9 Grand Accelerateur National d’Ions Lourds
10 Physik Department, Technische Universitat Munchen

Fig. 1. The Z versus $A – 2Q$ PID plot of the 85Ru setting. The fully stripped events ($Z – Q = 0$) are selected. The solid lines indicate the limits of known isotopes as of June 2017.

Fig. 2. The Z versus A/Q PID plot of the 105Te setting.