Low-energy dipole response of the halo nuclei 6He, 8He

C. Lehr,¹⁺,² T. Aumann,¹⁻,³ T. Nakamura,⁴⁺,² A. T. Saito,⁴⁺,² N. L. Achouri,⁵ D. Ahn,² H. Baba,² C. A. Bertulani,⁶ M. Boehmer,⁷ K. Boretzky,³⁺,² N. Chiga,² A. Corsi,⁵ D. Cortina-Gil,⁶ C. A. Douma,⁹ F. Dufour,⁷ Z. Elekes,¹⁰⁻,² J. Feng,¹¹ U. Forberg,¹² N. Fukuda,² I. Gasparic,¹３⁻,² Z. Ge,² R. Gernhäuser,¹⁷ J. M. Gheller,¹⁴ J. Gifelman,⁵ A. Gillibert,¹⁴ Z. Halász,¹⁰ M. N. Harakeh,⁹ A. Hirayama,¹⁴,⁺,² N. Inabe,⁷ T. Isobe,² J. Kahlhöfer,¹⁺,²,¹ N. Kalantar-Nayestanaki,⁹ D. Kim,¹⁵⁻,² M. A. Knösel,¹¹ T. Kobayashi,¹⁶ Y. Kondo,⁴⁺,² D. Körper,³ P. Kosceglou,¹⁺,² Y. Kubota,² P. J. Lee,¹⁷ S. Lindberg,¹⁻,² Y. Liu,¹¹ F. M. Marques,⁵ S. Masuoka,¹⁹ M. Matsumoto,⁴⁺,² J. Mayer,²⁰ H. Miki,¹⁺,² M. Miwa,²⁻,²¹ B. Montenegro,²¹ A. Obertelli,¹¹ N. Orr,⁵⁻,² H. Otsu,²⁻,² V. Pani,² S. Y. Park,¹⁵⁻,² M. Parlog,⁵ S. Paschalis,²²⁻,⁺ P.-M. Potlog,²³ S. Reichert,⁷ A. Revel,²¹ D. M. Rossi,¹ M. Sassano,² H. Scheit,¹¹ F. Schindler,¹¹ T. Shimada,⁴⁺,²² S. Shimoura,¹⁻,² H. Simon,²⁻,² L. Stuhl,¹⁻,² H. Suzuki,²⁻,² D. Symochnik,¹ H. Takeda,²⁻,² S. Takeuchi,⁴⁺,² J. Tanaka,²⁻,² T. Tomai,²⁻,² H. T. Törnqvist,¹⁺,² T. Uesaka,² V. Wagner,¹⁺,² H. Yamada,¹⁺,² B. Yang,¹¹ L. Yang,²⁺,² Z. H. Yang,²⁺ M. Yasuda,¹⁺,² K. Yoneda,² L. Zanetti,¹⁺,² and J. Zenihiro²

The electromagnetic properties of neutron-rich nuclei provide insight into their structure and dynamics.¹ The low-lying dipole strength of neutron-halo nuclei is of particular interest. The heaviest bound helium isotopes 6He and 8He are two- and four-neutron halo nuclei with a clear α plus 2n and 4n structure, respectively. After electromagnetic excitation, they mainly decay via two- and four-neutron emission. The 6He breakup has been measured previously by Aumann et al.,² while ab initio calculations have been carried out by Bacca et al.³⁻¹⁴ The existing data cover excitation energies up to 7 MeV, while the full low-energy response predicted by the theory extends up to 20 MeV.⁴⁻¹ Therefore, it is necessary to measure up to higher energies to study the complete region of interest. For 8He, only the 2n-breakup channel has been measured previously by Meister et al.,⁵ Nothing is known so far about the 4n-channel, where 8He breaks up into 4He and four neutrons, because of the experimental difficulties of measuring four neutrons in coincidence.

In July 2017, the SAMURAI37 experiment was performed with the purpose of extending the existing data for 6He with better statistics and measuring the breakup of 8He, both up to excitation energies of approximately 15 MeV. The multi-neutron decay of 6He and 8He after heavy-ion-induced electromagnetic excitation has been measured in complete kinematics to study the dipole response of these nuclei. The combination of the neutron detectors NÉBULA and R²B-NeuLAND demonstrator at the SAMURAI²⁵ setup and the high beam intensities available at RIBF made the measurement of the 4n-breakup channel possible for the first time. A primary 18O beam with an energy of 220 MeV/nucleon was used to produce secondary beams of 6He and 8He with an energy of 180 MeV/nucleon and a beam rate of 100 kHz, which were then guided to the SAMURAI spectrometer.

The experimental method is based on the measurement of the differential cross section $d\sigma(E1)/dE$ via the invariant-mass method, which allows us to extract the dipole-strength distribution $dB(E1)/dE$ and the photo-absorption cross section. To excite 6He and 8He electromagnetically, a Pb target was used. Additionally, a series of targets with increasing Z, namely CH$_2$, C, Ti and Sn, was used to study precisely the nuclear contribution to the cross section. This is especially important in the region of high excitation energy, where the electromagnetic excitation might not be dominant.

The data analysis is in progress.

References