Shell evolution beyond Z = 28 and N = 50: spectroscopy of $^{81-84}$ Zn[†]

C. M. Shand,^{*1} Zs. Podolyák,^{*1} M. Górska,^{*2} P. Doornenbal,^{*3} A. Obertelli,^{*3,*4} F. Nowacki,^{*5} T. Otsuka,^{*6} K. Sieja,^{*5} J. A. Tostevin,^{*1} and Y. Tsunoda^{*6} for the SEASTAR collaboration

The Shell Evolution and Search for Two-plus states At the RIBF (SEASTAR) experimental campaigns were conducted at the Radioactive Isotope Beam Factory (RIBF). For the experiments a ²³⁸U primary beam was accelerated to 345 MeV/nucleon and subsequently impinged onto a 3 mm thick ⁹Be production target at the entrance of the BigRIPS separator. Secondary fission beams of interest were then selected within BigRIPS using the $B\rho$ - ΔE - $B\rho$ technique. The results presented here on neutron-rich Zn isotopes were obtained from settings centered on ⁷⁹Cu and ⁸⁵Ga in the first (2014) and second (2015) SEASTAR campaigns, respectively.

Fig. 1. Doppler corrected γ -ray spectrum of ⁸⁴Zn.

The incoming ions were impinged on the liquid H₂ target of the MINOS device, while the resulting γ rays were detected with the DALI2 high-efficiency NaI(Tl) array. Low-lying excited states in the neutron-rich ⁸¹⁻⁸⁴Zn isotopes have been investigated. The 4⁺₁ state in ⁸²Zn and the 2⁺₁ and 4⁺₁ states in ⁸⁴Zn (see Fig. 1) were observed for the first time. In addition, γ -ray transition were identified in odd-mass ^{81,83}Zn. The main experimental conclusion of the work is that the magicity is confined to neutron number N = 50 only, as indicated by the increased $R_{4/2} = E(4^+)/E(2^+)$ ratios in ^{82,84}Zn when compared to than in the neutron-magic ⁸⁰Zn nucleus.

A magic or semi-magic core can be distorted as valence nucleons are added to a closed shell. The samar-

- [†] Condensed from the article in Phys. Lett. B **737**, 492 (2017)
- *1 Department of Physics, University of Surrey
- $*^2$ GSI
- *³ RIKEN Nishina Center
- ^{*4} IRFU, CEA, Saclay
- *5 IPHC, CNRS/IN2P3, Orsay
- ^{*6} Center for Nuclear Study, University of Tokyo

ium isotopes present a typical case. Shape evolution proceeds from a seniority level pattern in N = 82semi-magic ¹⁴⁴Sm, to a vibrational pattern at N =86 in ¹⁴⁸Sm, and finally a rotational one at N = 92in ¹⁵⁴Sm. At $N = 84^{146}$ Sm provides the transition between the seniority and vibrational schemes. In the case of Zn isotopes, with only two protons outside the Z = 28 shell, the situation is rather different. As deduced from the present experiment for the first time, the proton-neutron correlations are strong enough for a rapid change from the semi-magic structure at N =50 to a collective structure at N = 52. This is partly due to the weak Z = 28 sub-magic structure, which is a consequence of the repulsive nature of the tensor force between the proton $f_{7/2}$ and the fully occupied neutron $g_{9/2}$ orbits.

The experimental results were compared to three state-of-the- art shell-model calculations (see Fig. 2), considering different model spaces. They all correctly predict that the ^{82, 84}Zn isotopes exhibit collective-like character. The good agreement between experiment and theory suggests that breaking the ⁷⁸Ni core provides a significant contribution to low-lying states beyond Z = 28 and N = 50.

Fig. 2. Systematics of $R_{4/2} = E(4^+)/E(2^+)$ for Zn isotopes. The filled symbols are from this work. The results of the Ni78-II,¹⁾ A3DA-m,²⁾ and PFSDG-U³⁾ shell-model calculations are also indicated. The line at $R_{4/2} = 2$ indicates the vibrational limit.

References

- K. Sieja, T. R. Rodriguez, K. Kolos, D. Verney, Phys. Rev. C 88, 034327 (2013).
- Y. Tsunoda, T. Otsuka, N. Shimizu, M. Honma, Y. Utsuno, Phys. Rev. C 89, 031301 (2014).
- F. Nowacki, A. Poves, E. Caurier, B. Bounthong, Phys. Rev. Lett. 117, 272501 (2016).