Robustness of the $N = 34$ shell closure: First spectroscopy of 52Ar

H. N. Liu,1,* Y. L. Sun,1,* A. Obertelli,3,* P. Doornenbal,4 H. Baba,4 F. Browne,4 D. Calvet,1 F. Château,1 S. Chen,5,* N. Chiga,4 A. Corsi,1 M. L. Cortés,4 A. Delbart,1 J-M. Gheller,4 A. Giganon,1 A. Gillibert,1 C. Hilaire,1 T. Isobe,4 T. Kobayashi,7 Y. Kuba,4,8 V. Lapoux,1 T. Motobayashi,4 I. Murray,5,9 H. Otsu,4 V. Panin,4 N. Paul,1 W. Rodriguez,10,4 H. Sakurai,4,12 M. Sasano,4 D. Steppenbeck,4 L. Stuhl,8 Y. Togano,11,* T. Usaka,4 K. Wimmer,12,4 K. Yoneda,4,11 A. Chouiri,13 O. Aktas,2 I. Aumann,3 L. X. Chung,14 F. Flavigny,9 S. Franchoo,9 I. Gašparić,15,* R. -B. Gerst,17 J. Gibelin,13 K. I. Hahn,18 D. Kim,18,* T. Koiwai,12 Y. Kondo,19 P. Kosoglo,3,16 J. Lee,6 C. Lehr,3 B. D. Link,14 T. Lokotko,6 M. Macmormick,4 K. Moschner,17 T. Nakamura,19 S. Y. Park,18,4 D. Rossi,3 E. Sahin,20 D. Sohler,21 P-A. Söderström,4 S. Takeuchi,19 H. Toerneqvist,18 V. Vaquero,22 V. Wagner,3,4 S. Wang,23 V. Werner,3 X. Xu,6 H. Yamada,19 D. Yan,23 Z. Yang,4 M. Yasuda,19 and L. Zanetti5

It is now well known that magic numbers are not universal across the nuclear landscape and that new shell closures may emerge in exotic nuclei. For example, a new subshell closure at $N = 34$ has been predicted for neutron-rich nuclei.\(^1\) On the experimental side, the systematics of the $E(2^+_1)$ of Ti isotopes show no evidence for the existence of the $N = 34$ shell gap.\(^2\) Recently, the $E(2^+_1)$ of 54Ca was measured to be ~ 0.5 MeV smaller than that of 52Ca.\(^3\) This drop was attributed to the larger ground state correlation energy of 52Ca, and the results were interpreted as confirming the $N = 34$ magic number in Ca isotopes. For 52Ar, no spectroscopic information has been measured; however, its $E(2^+_1)$ was predicted to be the highest among Ar isotopes with $N \geq 20$.\(^5\) The spectroscopy of 52Ar thus offers a unique chance to explore the robustness of the $N = 34$ subshell closure and pin down the mechanism of its emergence.

The measurement of 52Ar was performed at the RIBF as part of the third campaign of the SEASTAR program. The fast radioactive beam containing 53K, amongst other products, was produced by fragmentation of a ~ 220 pA 70Zn primary beam at 345 MeV/nucleon on a 10-mm thick Be target. The constituents were identified using the BigRIPS frag-

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{Fig1.png}
\caption{Particle identification after the secondary target.}
\end{figure}

ment separator with the ΔE-TOF-Bp method. The incident beam, magnetically centered on 50K, was impinged on a 150-mm thick MINOS31 liquid hydrogen target to induce proton-removal reactions. The recoil protons were detected by the MINOS TPC tracker\(^5\) to reconstruct the reaction vertex. The MINOS efficiency was measured to be 90(5)%. The kinematic energy and intensity of the 53K beam in front of the target were ~ 240 MeV/nucleon and 1.0 pps, respectively. The reaction residues passed through the SAMURAI50 magnet with a central magnetic field of 2.7 T, and were identified by a 24-element plastic hodoscope and two forward drift chambers. Figure 1 shows the particle identification of the reaction residues. The de-excitation γ rays from the reaction residues were measured by the upgraded DALI2$^{+}$ array,\(^7\) which consists of 226 NaI(Tl) crystals. The preliminary Doppler-corrected γ-ray spectrum of 52Ar was obtained, and a clear ($2^+_1 \rightarrow 0^+_0$) candidate peak was found. Evidence for other transitions in 52Ar requires further analysis.

References
\begin{itemize}
 \item 7) I. Murray et al., in this report.
\end{itemize}