First Spectroscopic study of 56Ca

S. Chen,1,2,3 F. Browne,3 J. Lee,2 P. Doornenbal,3,4 A. Obertelli,4,5 H. Baba,3,4 D. Calvet,5 F. Château,4 N. Chiga,3,4 A. Corsi,4 M. L. Cortés,3 A. Delbart,4 J-M. Gheller,4,5 A. Giganon,4 A. Gillibert,4 C. Hilaire,4,5 T. Isho,3 T. Kobayashi,6 Y. Kubota,3,5 V. Lapoux,4,5 H. N. Liu,4,5 T. Motobayashi,3 I. Murray,3,4,5 H. Otsu,3 V. Panin,3,4 N. Paul,4,5 W. Rodriguez,6 H. Sakurai,3,4,10 M. Sassano,3 D. Steffenbeck,4 L. Stuhr,7 Y. L. Sun,4,5 Y. Togano,11 T. Uesaka,3 K. Wimmer,10 K. Yoneda,3 N. Achouri,12 O. Aktas,13 T. Aumann,5 L. X. Chung,14 F. Flavigny,8 S. Franchoo,8 I. Gasparic,15 R.-B. Gerst,16 J. Gibelin,12 K. I. Hahn,17 D. Kim,17 T. Koizumi,10 Y. Kondo,18 P. Koseoglu,5,15 C. Lehr,5 B. D. Linh,14 T. Lokotko,2 M. MacCormick,8 K. Moschner,16 T. Nakamura,18 S. Y. Park,17 D. Rossi,15 E. Sahin,19 D. Sohler,20 P.-A. Söderström,25 S. Takeuchi,18 H. Torenqvist,15 V. Vaquero,21 V. Wagner,5 S. Wang,22 V. Werner,5 X. Xu,2 H. Yamada,18 D. Yan,22 Z. Yang,3 M. Yasuda,18 and L. Zanetti15

The first measurement of low-lying excited states of 56Ca was performed as part of the third SEASTAR3 (Shell Evolution And Search for Two-plus energies At the RIBF) campaign in May 2017. In a simple shell-model description, this nucleus has two neutrons in the $f_{5/2}$ orbital outside the closed (sub)-shell nucleus 54Ca.3,9 The location of its 2_1^+ energy gives a measure-ment of the difference between 0^+ and 2^+ two-body matrix elements in $\nu(f_{5/2})^2$, which is of importance to understand the nature of the very neutron-rich, potential closed (sub)-shell nucleus 60Ca. Theoretical predic-tions of this energy level vary from 0.5 to 2 MeV; therefore, its experimental determination is desirable.

A 70Zn beam accelerated to 345 MeV/nucleon impinged on a 10-mm thick 9Be primary target with an average intensity of \sim160 pnA at the entrance of the BigRIPS separator to produce the radioactive secondary beam. BigRIPS was tuned to select and identify particles of interest via the measurement of B_ρ, ΔE and ToF by using standard beamline detectors. The particle identification of BigRIPS is shown in Fig. 1. The average production rate of 57Sc nuclei was 13.6 s$^{-1}$. To induce knock-out reactions populating low-lying states in 56Ca, the secondary beam impinged

![BigRIPS PID](image)

![SAMURAI PID](image)

Fig. 1. BigRIPS particle identification (left) and SAMURAI particle identification for 57Sc secondary beam (right). The 57Sc$(p, 2p)$ reaction channel is selected.

The beam energy in front of the secondary target was measured to be \sim250 MeV/nucleon. The upgraded DALI24,5 array, which contains 226 NaI(Tl) detectors, was used to measure gamma rays emitted from the in-flight particles. The reaction residues were identified using the SAMURAI spectrometer. The identification of the residues from the 57Sc secondary beam is also shown in Fig. 1, from which the 56Ca isotopes are selected.

Currently, the gamma-ray spectrum in coincidence with the 57Sc$(p, 2p)$ reaction channel is under analysis. This preliminary energy spectrum shows a candidate peak of the $2_1^+ \to 0_1^+$ transition observed at an energy consistent with the aforementioned range of theoretical predictions. The spectra coincident with other reaction channels, which produce 56Ca, are also under analysis.

References

4) I. Murray et al., In this report.