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Spectroscopic measurements of 84,86,88Ge were per-
formed within the SEASTAR campaign in 2015.1) The
spectroscopic results and theoretical predictions in-
spired intensive discussions of triaxial features for the
Ge isotopic chain. Two elementary models, which de-
scribe the nucleus as a rigid triaxial rotor or as softly
shaped, are competing in this region. Both models de-
scribe the breaking of the axial symmetry of the Bohr
Hamiltonian2) by introducing the triaxial deformation
parameter γ, which ranges from 0◦ (prolate shape) to
60◦ (oblate shape), and the axial elongation β. The
maximum of triaxiality is reflected by γ = 30◦. The
rigid triaxial rotor model by Davydov and co-workers3)

considers a well-defined minimum for the potential en-
ergy surface while the model by Wilets and Jean4)

treats the potential independent of γ, introducing γ-
softness. The difference between the soft and rigid
cases is manifested in the energy spacing between the
odd and even members of the γ band. In the case of
a rigid triaxial rotor, the odd-spin levels are located
closer to the lower-lying even spin levels, whereas the
odd spin levels are located closer to the higher-lying
even spin levels in the case of a γ-soft nucleus. This
energy difference is referred to as staggering.5,6)

At the RIBF, a 238U beam with an energy of
345 MeV/u was impinged on a 3-mm-thick 9Be target
at the entrance of BigRIPS.7) The isotopes of interest
were identified by BigRIPS and ZeroDegree spectrom-
eter in two different settings. The Ge isotopes were
produced by knockout reactions inside the MINOS8)

LH2 target and the emitted γ radiation was detected
with DALI2.9) The TPC of MINOS8) was used to im-
prove the Doppler correction.

In total, 16 transitions in 84,86,88Ge have been ob-
served, ten of which were so far unknown. For 86Ge
and 88Ge, new level schemes are proposed, which are
shown in Fig. 1 in red. The experimental results are
compared to a shell model calculation and a symmetry-
conserving configuration mixing Gogny (SCCM) calcu-
lation in Fig. 1. The predicted sequences of states are
in good agreement with the experimental results, al-
though both theories overestimate the level energies in
all cases. Nevertheless, the predicted R4/2 ≈ 2.5 agrees
with the data. Both calculations suggest a low-lying
γ band, which indicates some amount of triaxiality in
both isotopes. Furthermore, both theories predict a
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Fig. 1. Systematics of the 86,88Ge level energies from ex-

periment compared to theoretical predictions from shell

model (SM) and symmetry-conserving configuration

mixing Gogny (SCCM) calculations.

3+1 state of 86Ge that is closer to the 2+2 state than to
the 4+2 state of the γ band. A promising candidate for
this state is observed through a 380(8)-keV transition
of 86Ge, because the strongest decay of the 3+1 state
is expected to the 2+2 state. As highlighted before,
the staggering5,6) in the γ band should take a posi-
tive value for a rigid triaxial rotor. This would be the
case for a well-deformed rotor with E(J) ∼ J(J+1) as
well, though in such a case, the γ-band head is at much
higher values. So far only one nucleus in the medium-
heavy mass region A < 100 is known with rigid triax-
ial features. This nucleus is 76Ge, where a staggering
S(4) = 0.091(2) was found.10) With the level assign-
ments presented in Fig. 1, a value of S(4) = 0.20(4)
results for 86Ge, pointing to an even larger degree of
triaxiality in the ground state than assigned to 76Ge.
This results agrees with the predictions of both theo-
ries.
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The first measurement of low-lying excited states of
56Ca was performed as part of the third SEASTAR1)

(Shell Evolution And Search for Two-plus energies At
the RIBF) campaign in May 2017. In a simple shell-
model description, this nucleus has two neutrons in
the f5/2 orbital outside the closed (sub)-shell nucleus
54Ca.2) The location of its 2+1 energy gives a measure-
ment of the difference between 0+ and 2+ two-body
matrix elements in ν(f5/2)

2, which is of importance to
understand the nature of the very neutron-rich, poten-
tial closed (sub)-shell nucleus 60Ca. Theoretical pre-
dictions of this energy level vary from 0.5 to 2 MeV;
therefore, its experimental determination is desirable.

A 70Zn beam accelerated to 345 MeV/nucleon im-
pinged on a 10-mm thick 9Be primary target with
an average intensity of ∼160 pnA at the entrance
of the BigRIPS separator to produce the radioactive
secondary beam. BigRIPS was tuned to select and
identify particles of interest via the measurement of
Bρ, ∆E and ToF by using standard beamline detec-
tors. The particle identification of BigRIPS is shown in
Fig. 1. The average production rate of 57Sc nuclei was
13.6 s−1. To induce knock-out reactions populating
low-lying states in 56Ca, the secondary beam impinged
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Fig. 1. BigRIPS particle identification (left) and SAMU-

RAI particle identification for 57Sc secondary beam

(right). The 57Sc(p, 2p)56Ca channel is selected.

on the 150-mm-length LH2 target of the MINOS de-
vice.3) The beam energy in front of the secondary tar-
get was measured to be ∼250 MeV/nucleon. The up-
graded DALI24) array, which contains 226 NaI(Tl) de-
tectors, was used to measure gamma rays emitted from
the in-flight particles. The reaction residues were iden-
tified using the SAMURAI spectrometer.5) The identi-
fication of the residues from the 57Sc secondary beam
is also shown in Fig. 1, from which the 56Ca isotopes
are selected.

Currently, the gamma-ray spectrum in coincidence
with the 57Sc(p, 2p)56Ca reaction channel is under
analysis. This preliminary energy spectrum shows a
candidate peak of the 2+1 → 0+1 transition observed at
an energy consistent with the aforementioned range of
theoretical predictions. The spectra coincident with
other reaction channels, which produce 56Ca, are also
under analysis.
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