K. Rykaczewski,^{*1} N. Brewer,^{*1} B. Rasco,^{*1} D. Stracener,^{*1} R. Yokoyama,^{*2} R. Grzywacz,^{*2} J. L. Tain,^{*3} J. Agramunt,^{*3} A. Tolosa-Delgado,^{*3} C. Domingo-Pardo,^{*3} A. Algora,^{*3} A. I. Morales,^{*3} S. Nishimura,^{*4}

N. Fukuda,^{*4} K. Matsui,^{*4} P. Vi,^{*4} J. Liu,^{*4} H. Baba,^{*4} G. Kiss,^{*4} S. Go,^{*4} S. Kubono,^{*4} H. Sakurai,^{*4}

A. Tarifeno-Saldivia,^{*5} F. Calvino,^{*5} I. Dillmann,^{*6} R. Caballero-Foch,^{*6} T. Davinson,^{*7} P. Woods,^{*7}

C. Griffin,^{*7} A. Estrade,^{*8} N. Nepal,^{*8} R. Surman,^{*9} G. Lorusso,^{*10}

and K. Miernik^{*11} for the BRIKEN Collaboration

The measurement of new beta-delayed (multi) neutron emission (βxn) properties for nuclei near doublymagic ⁷⁸Ni has been performed in May 2017 at RIKEN. Exotic nuclei produced with the 345 MeV/nucleon $^{238}\mathrm{U}$ beam and ⁹Be target, were studied by means of BigRIPS and using the world-largest array of ³He counters BRIKEN,¹⁾ a highly segmented array of Silicon detectors $AIDA^{(2)}$ and 2 Ge clovers. This hybrid setup has nearly 70% efficiency for detecting one neutron having up to 1 MeV and over 50% for 5 MeV energy. The BigRIPS setting was maximized for the transmission of ⁸⁴Zn. The isotopes between ⁷⁴Co-⁷⁸Co up to ⁹⁷Kr-¹⁰⁰Kr were produced and identified. This 3-day run with 30 to 50 particle-nA beam intensity yielded over 7000 ⁷⁸Ni ions implanted into AIDA (analysis A. Tolosa-Delgado). The ⁷⁷Cu test case resulted in β 1n branching ratio $P_{1n} = 29(1)\%$ in a good agreement with the known value of 30.3(22)%³⁾. The $\beta 1n$ and $\beta 2n$ values for ⁸⁶Ga decay⁴ known as 60(10)% and 20(10)%, respectively, were obtained more precisely as 59(3)% and 16(1)%, see Fig. 1. Over 20 new P_{1n} values have been measured. Predicted $\beta 2n$ decay mode^{5,6}) has been inspected in over 14 isotopes yielding for the first time P_{2n} values, *e.g.*, for the activities of ⁸⁴Zn, ⁸⁷Ga, ⁸⁹Ge, ⁹⁰As and ⁹¹As. New half-lives $(T_{1/2})$ have been measured using selective time and space correlation between ion, beta, and neutron signals, see ⁸⁷Ga decay in Fig. 1. New data on the βxn branching ratios together with newly measured half-lives will be used to verify and further develop beta decay modeling,⁷) in particular modeling of the competition of the $\beta \ln/2n$ decay modes. Large set of new P_{xn} and $T_{1/2}$ values, obtained near and beyond doubly-magic waiting point nucleus ⁷⁸Ni, will help to develop further the analysis of heavy nuclei production within the astrophysical rprocess, occurring, e.g., at the merging neutron star environment.⁸⁾ Preliminary data analysis was performed by N. Brewer, B. Rasco and R. Yokoyama.

- *² Uni. Tennessee Knoxville
- *³ IFIC Valencia
- *4 RIKEN Nishina Center
- *⁵ UPC Barcelona
- *6 TRIUMF Vancouver
- ^{*7} Uni. Edinburgh
- *8 CMU M. Pleasant
- *⁹ Uni. Notre Dame
- *¹⁰ NPL Teddington
- *¹¹ Uni. Warsaw

Fig. 1. (upper panel) Decay pattern of 1n (in black) and 2n (in red) events in coincidence with β -emission following identified ⁸⁶Ga ion implantation into AIDA; (lower panel) decay pattern of β 1n events in the decay of identified ⁸⁷Ga ions in AIDA.

References

- 1) Tarifeno-Saldivia et al., J. Instrum. 12, 04006 (2017).
- 2) Griffin *et al.*, PoS, **NIC-XIII**, 097 (2014).
- 3) Ilyushkin et al., Phys. Rev. C 80, 054304 (2009).
- 4) Miernik et al., Phys. Rev. Lett. 111, 132502 (2013).
- 5) Moeller et al., Phys. Rev. C 67, 055802 (2003). http:// t2.lanl.gov/nis/molleretal/publications/tpnff.dat
- 6) Miernik, Phys. Rev. C **90**, 054306 (2014).
- 7) Yokoyama et al., in preparation.
- 8) Abbott et al., Phys. Rev. Lett. 119, 161101 (2017).

^{*1} ORNL Physics Division Oak Ridge