β -delayed neutron emission probabilities for understanding the formation of the r-process rare-earth peak

A. Tarifeño-Saldivia,^{*1} G. G. Kiss,^{*2,*3} A. I. Morales,^{*4} A. Estrade,^{*5} S. Nishimura,^{*2} C. Domingo-Pardo,^{*4}

A. Agramunt,^{*4} D. S. Ahn,^{*2} A. Algora,^{*3,*4} H. Baba,^{*2} N. T. Brewer,^{*6} R. Caballero Folch,^{*7} F. Calvino,^{*1}

T. Davinson,^{*8} I. Dillmann,^{*7} N. Fukuda,^{*2} S. Go,^{*2} R. K. Grzywacz,^{*9} O. Hall,^{*8} L. Harkness-Brennan,^{*8}

T. Isobe,^{*2} C. J. Griffin,^{*8} D. Kahl,^{*8} A. Korgul,^{*10} S. Kubono,^{*2} M. Labiche,^{*11} J. Liu,^{*2} K. Matsui,^{*2}

K. Miernik,^{*10} N. Nepal,^{*5} B. C. Rasco,^{*6} K. P. Rykaczewski,^{*6} Y. Saito,^{*7} H. Sakurai,^{*2} Y. Shimizu,^{*2} D.W. Stracener,^{*6} T. Sumikama,^{*2} H. Suzuki,^{*2} J. L. Tain,^{*4} H. Takeda,^{*2} A. Tolosa,^{*4} P. Vi,^{*2} P. J. Woods,^{*8}

D.W. Stracener,^{*0} T. Sumikama,^{*2} H. Suzuki,^{*2} J. L. Tain,^{*4} H. Takeda,^{*2} A. Tolosa,^{*4} P. Vi,^{*2} P. J. Woods,^{*0} and R. Yokoyama^{*9}

The main signatures of the rapid-neutron capture process (so-called *r*-process) are the three large abundance maxima in the solar-system composition at masses of A~80, 130, and 195, which are related to the flow of matter through the three neutron shell closures at N=50, 82, and 126. In contrast to these three characteristic peaks, there is a small—but distinct—peak around A~160, that corresponds to the region of rare-earth elements. From the astrophysics point of view, the most interesting feature of the rare-earth peak (REP) is that, contrary to the three main maxima that form during (n, γ) \leftrightarrow (γ , n) equilibrium, the REP originates later, after neutron exhaustion, thus representing a unique opportunity to study the late-time environmental conditions.

Although several different production mechanisms were suggested, most models agree on the fact that β -delayed neutron emission plays a crucial role in the REP formation.^{1–3} Recently, the largest and most efficient β -delayed neutron detector⁴ was built by the BRIKEN collaboration at the RIKEN Nishina Center to study systematically the decay of very neutron-rich nuclei across the nuclear chart. The so-called BRIKEN neutron detector consists of 140 ³He gas-filled proportional counters embedded in a high-density polyethylene moderator. The neutron detector and two CLARIONtype clover HPGe detectors are placed around the AIDA DSSSD array,⁵ which contains six layers of highly segmented Si detectors for the detection of implantations and beta electrons.

The NP1612-RIBF148 experiment is focused on the measurement of the β -delayed neutron emitters, which are critical for the formation of the REP in the solar system abundances. In an exploratory run (~25% to-tal beamtime), performed in June 2017, the β decays of exotic Pr-Gd species were studied at the Radioactive Isotope Beam Factory. A 50-pnA-intensity ²³⁸U beam was

- *¹ Universitat Politècnica de Catalunya (UPC)
- *² RIKEN Nishina Center
- *³ Institute for Nuclear Research (Atomki)
- *⁴ Instituto de Física Corpuscular
- *5 College of Science and Engineering, Central Michigan University
- *6 Oak Ridge National Laboratory
- *7 TRIUMF
- *8 School of Physics and Astronomy, University of Edinburgh
 *9 Department of Physics and Astronomy, University of Tennessee
- *10 Department of Physics, University of Warsaw
- *¹¹ STFC Daresbury Laboratory

REP exploratory run (24h) 65 94809 ¹⁶⁸Gd 2.637 64 61.49 Std De 0.02683 ¹⁶⁶Eu 63 ¹⁶⁴Sm 62 61 60 59 58 Resolution<0.05% Z = 60A=158 A=160 Counts 157 10 A/Q

Fig. 1. PID of the exploratory run for the NP1612-RIBF148 experiment.

accelerated up to an energy of 345 MeV/nucleon before it was incident on a 4-mm-thick Be target to produce radioactive secondary beams by in-flight fission. The nuclei of interest were separated and identified in the BigRIPS spectrometer, transported through the Zero-Dregree spectrometer and implanted in the AIDA array. Figure 1 (top) shows the particle identification matrix for the statistics accumulated during the first 24 h. The bottom panel of Fig. 1 shows the projection of the PID matrix on the A/Q axis for the Nd isotopes; the A/Qresolution achieved—less than 0.05%—ensures a good separation of fully- stripped and H-like ions. The results of the exploratory run are promising; for the first time ever, key REP progenitors³⁾ have become accessible and the study of their beta decay properties will be possible thanks to the use of the state-of-the-art detectors BRIKEN and AIDA. Our intention is to continue the experiment as soon as the 238 U beam is available again.

References

- R. M. Mumpower, R. Surman, G. C. McLaughlin, A. Aprahamian, Prog. Part. Nucl. Phys. 86, 86 (2016).
- A. Arcones, G. Martinez Pinedo, Phys. Rev. C 83, 045809 (2011).
- M. Mumpower *et al.*, Prog. Part. Nucl. Phys. 86, 86 (2016).
- A. Tarifeno-Saldivia *et al.*, Jour. of Instr. **12**, P04006 (2016).
- 5) C. Griffin et al., POS (NIC-XIII) 097 (2014).