Study of the superallowed $0^+ \rightarrow 0^+$ β decay of 70Br†

A. I. Morales,*1 A. Algora,*1,2 B. Rubio,*1 K. Kaneko,*3 J. Agramunt,*4 V. Guadilla,*1 A. Montaner-Pizà,*1 S. E. A. Orrigo,*5 G. de Angelis,*4 D. Napoli,*4 F. Recchia,*5 S. Lenzi,*5 A. Bosi,*5 S. Nishimura,*6 G. Kiss,*6 V. H. Phong,*6 J. Wu,*6 P.-A. Söderström,*6 T. Sumikama,*6 H. Suzuki,*6 H. Takeda,*6 D. S. Ahn,*6 H. Baba,*6 P. Doornebal,*6 N. Fukuda,*6 N. Inabe,*6 T. Isobe,*6 T. Kubo,*6 S. Kubono,*6 H. Sakurai,*6 Y. Shimizu,*6 C. Sidong,*6 B. Blank,*7 P. Ascher,*7 M. Gerbaux,*7 T. Goigoux,*7 J. Giovannazzo,*7 S. Grévy,*7 T. Kurtukian Nieto,*7 C. Magron,*7 W. Gelletly,*1,8 Za. Dombreddi,*7 Y. Fujita,*9 M. Tanaka,*9 P. Aguiler,*10 F. Molina,*10 J. Eberth,*11 F. Diel,*11 D. Lubo,*12 C. Borcea,*13 E. Ganioglu,*14 D. Nishimura,*15 H. Oikawa,*15 Y. Takei,*15 S. Yagi,*15 W. Korten,*16 G. de France,*17 P. Davies,*18 J. Liu,*19 J. Lee,*19 T. Lokotho,*19 I. Kojouharov,*20 N. Kurz,*20 and H. Shafin*20

One of the core concepts of the Electroweak Standard Model (ESM) is the unitarity of the Cabibbo-Kobayashi-Maskawa (CKM) matrix which describes the mixing between the three families of quarks. Increasingly high-precision measurements of the CKM matrix elements are required to test the limits on any possible physics beyond the ESM. The largest matrix element, the up-down term V_{ud}, can be extracted from high-precision measurements of half-lives, masses, and branching ratios of superallowed β transitions between $J^P = 0^+$, $T = 1$ analog states starting in $N = Z$ nuclei.\(^1\) In this report we provide the most precise half-life measurement for the $T = 1$ ($J^P = 0^+$) ground state of the heavy self-conjugate nucleus 70Br and the first estimate of the total branching fraction decaying through the first 2^+ state in the daughter nucleus, 70Se.

The 70Br nuclei were produced in the fragmentation of a 78Kr primary beam at 345 MeV/nucleon and 38 pnA colliding with a 5-mm thick Be target. After separation and selection in the BigRIPS separator, the nuclei were implanted in the WAS3ABi active stopper, surrounded by the EURICA γ-ray spectrometer.\(^2\)

Standard delayed-coincidence techniques were applied to study the β decay of 70Br, including an exhaustive evaluation of the factors that could influence the half-life measurement.\(^3\) As an example, Fig. 1 shows the half-life of the $T = 1$ ($J^P = 0^+$) ground state as a function of the fitting range (a) and the β threshold (b).

References

1 Condensed from the article in Phys. Rev. C 95, 064327 (2017)

2 MTA ATOMKI

3 Department of Physics, Kyushu Sangyo University

4 INFN-Legnaro

5 INFN-Padova

6 RIKEN Nishina Center

7 CEN Bordeaux-Gradignan

8 Department of Physics, Surrey University

9 Osaka University

*10 CCHEN

*11 Institute of Nucl. Physics, Universität zu Köln

*12 Physik Department, Technische Universität München

*13 IFIN-HH, Bucarest

*14 Department of Physics, University of Istanbul

*15 Tokyo Univ. Sci.

*16 CEA-Saclay

*17 GANIL-Caen

*18 Department of Physics, York University

*19 Department of Physics, University of Hong Kong

*20 GSI, Germany