Yield development of KEK isotope separation system

Y. X. Watanabe,^{*1} Y. Hirayama,^{*1} M. Mukai,^{*2,*3} Y. Kakiguchi,^{*1} H. Miyatake,^{*1} M. Oyaizu,^{*1} P. Schury,^{*1} M. Wada^{*1,*2} M. Ahmed,^{*1,*3} S. Kimura,^{*2,*3} J. Y. Moon,^{*4} J. H. Park,^{*4} A. Taniguchi,^{*5} H. Watanabe,^{*2,*6} A. Odahara,^{*7} S. Kanaya,^{*2,*7} and H. Muhammad^{*7}

We have been developing the KEK Isotope Separation System $(KISS)^{1}$ for the lifetime measurements of neutron-rich (*n*-rich) nuclei around N = 126, which is relevant to the r-process nucleosynthesis.²⁾ The multinucleon transfer reaction between the $^{136}\mathrm{Xe}$ beam and the ¹⁹⁸Pt target is considered as one of the promising candidates for the efficient production of those n-rich nuclei.³⁾ The reaction products are thermalized and neutralized in a gas cell filled with argon gas. They are transported to the exit of the gas cell by a laminar gas flow, where they are irradiated by lasers to be elementselectively ionized using the laser resonance ionization technique. The extracted ions are mass-separated to be implanted into an aluminized Mylar tape, where β - γ spectroscopy is performed to measure their lifetimes and nuclear structures.

Only the vicinity of the target nucleus could be accessed in the transfer of a few neutrons and protons at the present KISS, because of the limited extraction efficiency and acceptable beam intensity. The yield development is essential for KISS to achieve lifetime measurements of *n*-rich nuclei around N = 126. The GRAZING calculations⁴ predict more production yields when using the ²³⁸U beam than the ¹³⁶Xe beam. We performed an R&D experiment using the ²³⁸U beam in order to investigate its feasibility.

The doughnut-shaped gas cell⁵⁾ was introduced to accept intense beams. A rotating ¹⁹⁸Pt target of 12.5 mg/cm² thickness was bombarded by a ²³⁸U beam that was accelerated up to 10.75 MeV/nucleon by RRC. The beam energy on the target was tuned by rotating energy degraders to approximately 8.9 MeV/nucleon, which is the optimal value in the calculations. The multi-segmented proportional gas counter⁶⁾ was used to detect β -rays from the extracted radioactive isotopes in order to identify them by measuring their lifetimes.

The extraction of ^{199,201}Pt, ^{196,197}Ir and ¹⁹⁶Os was confirmed in the experiment. Crosses in the upper panel of Fig. 1 show the extraction yields of ¹⁹⁹Pt as a function of the ²³⁸U beam intensity. They are smaller than those with the ¹³⁶Xe beam (circles) for all

- *5 Research Reactor Institute, Kyoto University
- $^{*6}~$ School of Physics and Nuclear Energy Engineering, Beihang University
- *7 Department of Physics, Osaka University

beam intensities, and the discrepancy becomes larger as the beam intensity increases. The lower panel shows a comparison between the extraction yields of various isotopes with the ²³⁸U beam (crosses (26 pnA) and diamonds (36 pnA)) and the ¹³⁶Xe beam (circles (50 pnA)). The extraction yields with the ²³⁸U beam were smaller than those with the ¹³⁶Xe beam by about one order of magnitude in contrast to the expectations from the GRAZING calculations. The reduction in extraction yields with the ²³⁸U beam is supposed to be caused by the re-neutralization of the laser-ionized atoms by the radiation from the dense plasma in the argon gas induced by the scattered ²³⁸U beam. We will investigate such a plasma effect systematically using the beam of a lighter nucleus.

Fig. 1. (Upper) Beam intensity dependence of the measured extraction yields of ¹⁹⁹Pt for the ¹³⁶Xe (circles) and ²³⁸U (crosses) beams. (Lower) Extraction yields of various isotopes for the ²³⁸U (crosses and diamonds) and ¹³⁶Xe (circles) beams.

References

- Y. Hirayama *et al.*, Nucl. Instrum. Methods B **383**, 4 (2015).
- 2) S. C. Jeong et al., KEK Report 2010-2, (2010).
- Y. X. Watanabe *et al.*, Phys. Rev. Lett. **115**, 172503 (2015).
- A. Winther, Nucl. Phys. A 572, 191 (1994); 594, 203 (1995).
- Y. Hirayama *et al.*, Nucl. Instrum. Methods B **412**, 11 (2017).
- M. Mukai *et al.*, Nucl. Instrum. Methods A 884, 1 (2018).

^{*1} Wako Nuclear Science Center (WNSC), Institute of Particle and Nuclear Studies (IPNS), High Energy Accelerator Research Organization (KEK)

^{*&}lt;sup>2</sup> RIKEN Nishina Center

^{*3} Department of Physics, University of Tsukuba

^{*4} Institute for Basic Science (IBS)