Nuclear spectroscopy of ^{196,197,198}Ir isotopes

M. Mukai,^{*1,*2} Y. Hirayama,^{*3} Y. X. Watanabe,^{*3} P. Schury,^{*3} H. Miyatake,^{*3} Y. Kakiguchi,^{*3} M. Oyaizu,^{*3} M. Wada,^{*3} M. Ahmed,^{*1} S. Kimura,^{*1,*2} A. Ozawa,^{*1} H. Haba,^{*2} H. Ueno,^{*2} J. Y. Moon,^{*4} J. H. Park,^{*4} H. Watanabe,^{*5} and S. Kanaya^{*6}

For improving the accuracy of theoretical β -decay half-lives $(T_{1/2})$ for the r-process nuclei relevant to the 3rd peak in the r-abundances, a systematic experimental study of nuclear structures around N = 126 is required. We performed half-life measurements of 196,197,198 Ir (Z= 77, N = 119, 120, 121) at KISS¹⁾ to extract the refractory elements of the neutron-rich nuclei produced by the multi-nucleon transfer reaction 136 Xe + 198 Pt.²⁾ We also measured their hyperfine structure (HFS) to estimate the wave-function from the nuclear electromagnetic moment, spin, and quadrupole deformation parameter.

The extracted ions from KISS are implanted on an aluminized Mylar tape, and then β -rays emitted from the unstable nuclei are detected by the multi-segmented proportional gas-counter.³⁾ For the half-life measurement, growth and decay curves were measured when the time sequence of the KISS beam on/off = 1.5/4 $T_{1/2}$. After the confirmation of the half-lives and the extraction yields, the HFS spectra of the extracted nuclei were measured by counting the β -rays as a function of the excitation laser wavelength.

The typical time spectrum of the β -decay of ¹⁹⁸Ir is shown in Fig. 1. The fitting curve, which consists of one parent nucleus and a constant background, is shown by the red line. The half-lives of ^{196,197,198}Ir were evaluated to be 51(4) s, 6.1(4) min, and 8.9(4) s, respectively. These values are in good agreement with the values in a literature,⁴⁾, *i.e.*, 52(1) s, 5.8(5) min, and 8(1) s. The yields of more than 5 pps were high enough to perform the HFS measurements.

The magnetic dipole moment μ and the isotope shift of ^{196,197,198}Ir were deduced from the fittings of the measured HFS spectra. The μ values of odd-A Ir and Au (Z = 79) isotopes of $I^{\pi} = 3/2^{+5}$ are shown in Fig. 2. The evaluated μ value of ¹⁹⁷Ir shows a similar systematic trend in gold isotopes. The μ values of ¹⁹⁷Ir and ¹⁹⁹Au are about two times larger than the values of the lighter odd-A isotopes, which are close to the Schmidt value 0.12 of the π d3/2 orbit. A larger μ suggests a larger deformation of ¹⁹⁷Ir and ¹⁹⁹Au.

The HFS also yields the nuclear mean-square charge radius and the quadrupole deformation parameters $|\beta_2|$, as shown in Fig. 3. The variations of $|\beta_2|$ at A = 196-198 seem to be consistent with the trend of the theoretical

- *³ Wako Nuclear Science Center (WNSC), Institute of Particle and Nuclear Studies (IPNS), High Energy Accelerator Research Organization (KEK)
- *⁴ Institute for Basic Science, Rare Isotope Science Project
- *5 School of Physics and Nuclear Energy Engineering, Beihang University
- *6 Department of Physics, Osaka University

Fig. 1. Measured growth and decay time spectra for ¹⁹⁸Ir. The solid line indicates the best fitting curve to the experimental data.

Fig. 2. Magnetic dipole moments of odd-A Ir and Au isotopes of $I^{\pi} = 3/2^{+,5}$ The broken line indicates the Schmidt value 0.12 of the $\pi d3/2$ orbit.

Fig. 3. The experimental β_2 values of iridium isotopes are compared with the theoretical values. The measured $|\beta_2|$ values of the isotopes $A \leq 193$ were taken from Ref. 7).

values given by the FRDM model⁶⁾ which predicts the shape transition from a prolate to an oblate shape between A = 196 and 197. Further study of the nuclear structures of ^{196–198}Ir isotopes is in progress for the publication.

References

- Y. Hirayama *et al.*, Nucl. Instrum. Methods B **383**, 4 (2015).
- Y. X. Watanabe *et al.*, Phys. Rev. Lett. **115**, 172503 (2015).
- 3) M. Mukai et al., Nucl. Instrum. Methods A 884, 1 (2018).
- 4) http://www.nndc.bnl.gov.
- N. J. Stone, IAEA Vienna Report No. INDC(NDS)-0658 (2014).
- 6) P. Möller, At. Data Nucl. Data Tables 59, 185 (1995).
- 7) D. Verney et al., Eur. Phys. J. A 30, 489 (2006).

^{*1} Department of Physics, University of Tsukuba

^{*&}lt;sup>2</sup> RIKEN Nishina Center