Cross-section measurement of neutron-rich Pd isotopes produced from an RI beam of 132 Sn at 280 MeV/nucleon

H. Suzuki,^{*1} K. Yoshida,^{*1} N. Fukuda,^{*1} H. Takeda,^{*1} Y. Shimizu,^{*1} D. S. Ahn,^{*1} T. Sumikama,^{*1} N. Inabe,^{*1} T. Komatsubara,^{*1} H. Sato,^{*1} Z. Korkulu,^{*1} K. Kusaka,^{*1} Y. Yanagisawa,^{*1} M. Ohtake,^{*1} H. Ueno,^{*1} S. Michimasa,^{*2} N. Kitamura,^{*2} K. Kawata,^{*2} N. Imai,^{*2} O. B. Tarasov,^{*1,*3} T. Kubo,^{*1,*3,*4} D. P. Bazin,^{*1,*3} J. Nolen,^{*1,*5} and W. F. Henning^{*1,*5,*6}

We performed an experiment to measure the production cross sections of ^{125–128}Pdfrom a radioactiveisotope (RI) beam of ¹³²Sn by using the BigRIPS separator and the ZeroDegree spectrometer at the RIKEN RI Beam Factory (RIBF) in November 2017.

In-flight fission of ²³⁸U beam is a useful method for the production of mid-heavy neutron-rich isotopes. At RIBF, approximately 120 new isotopes have been produced from the ²³⁸U beam, and various nuclei, such as a double-magic nuclide, ¹³²Sn, are supplied for many experiments. However, the production cross sections decrease drastically for more exotic nuclei. Thus, the nuclei in a very neutron-rich region, such as the ones involved with the rapid process in nucleosynthesis, are difficult to be produced by the in-flight fission of ²³⁸U.

Another method of RI-beam production is an ISOL technique, by which greater yields of RIs are produced in the target by a proton beam even at the same beam power as the 238 U beam for in-flight fission. However, the extraction efficiency is not good, especially for exotic nuclei with short half-lives.

To solve these problems, a two-step reaction scheme¹⁾ was proposed for the efficient production of very neutron-rich nuclei. First, a long-lived RI such as 132 Sn, which has a half-life of 40 s, is produced by an ISOL and reaccelerated by post-accelerators. Then, objective exotic nuclei, such as $^{125-128}$ Pd,are produced by fragmentation by impinging on a secondary target. By using this scheme, one may obtain greater yields of neutron-rich nuclei than those obtained by direct production through the in-flight fission of the 238 U beam.

Production cross sections up to 125 Pd were already measured at GSI;²⁾ thus, we measured those of more neutron-rich Pd isotopes. A 132 Sn beam was produced from a 40-pnA 345-MeV/nucleon 238 U⁸⁶⁺ beam impinging on a 4-mm-thick Be target. Its energy was 280 MeV/nucleon, the intensity was 30 kHz, and the purity was 50%. The neutron-rich Pd isotopes were produced at a 6-mm-thick Be target at F8. The particle identification (PID) of the isotopes was performed by deducing the atomic number, Z, and mass-tocharge ratio, A/Q, of the fragments based on the TOF-

*6 Physik Department, Technische Universität München

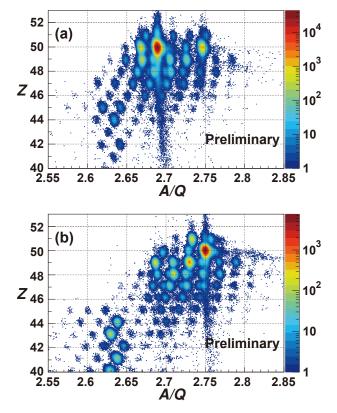


Fig. 1. The Z versus A/Q PID plots in the ZeroDegree spectrometer. (a) The ¹²⁶Pd setting. (b) The ¹²⁸Pd setting.

 $B\rho$ - ΔE method in the ZeroDegree spectrometer, which is essentially the same method as the one in BigRIPS.³⁾ LaBr₃ crystal was installed at F11 for measuring the total kinetic energy. Two ZeroDegree settings the ¹²⁶Pd setting and the ¹²⁸Pd setting—were applied for measuring the cross sections of ^{125, 126}Pd and ^{127, 128}Pd, respectively.

The Z vs A/Q PID plots for the nuclei produced from the ¹³²Sn beam are shown in Fig. 1. Many isotopes including ^{125–128}Pd are observed. Further analyses, such as the improvement of the A/Q resolution and the removal of background events, are in progress.

References

- 1) K. Helariutta et al., Eur. Phys. J. A 17, 181 (2003).
- 2) D. Pérez-Loureiro et al., Phys. Lett. B 703, 552 (2011).
- N. Fukuda *et al.*, Nucl. Instrum. Methods Phys. Res. B 317, 323 (2013).

^{*1} RIKEN Nishina Center

^{*&}lt;sup>2</sup> Center for Nuclear Study, University of Tokyo

^{*&}lt;sup>3</sup> National Superconducting Cyclotron Laboratory, Michigan State University

^{*4} Facility for Rare Isotope Beams, Michigan State University

^{*&}lt;sup>5</sup> Division of Physics, Argonne National Laboratory