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The pairing anti-halo effect is a phenomenon by
which a pairing correlation suppresses the divergence
of nuclear radius, which happens for single-particle
states with orbital angular momenta of l = 0 and
1 in the limit of vanishing binding energy. This
phenomenon was originally proposed based on the
Hartree-Fock-Bogoliubov (HFB) theory. Although the
HFB method provides a clear mathematical interpre-
tation of the pairing anti-halo effect, its physical mech-
anism is less transparent. The aim of this paper is to
propose a more intuitive idea on the pairing anti-halo
effect, using a three-body model. This model is formu-
lated to include many-body correlations beyond the
HFB model, providing a complementary opportunity
to clarify the concept based on the HFB method. It
can be used to test whether the pairing anti-halo effect
is specific only to the mean-field treatment or not.

The Hamiltonian for the three-body model reads1)

H = ĥ(1) + ĥ(2) + vpair(r⃗1, r⃗2) +
p⃗1 · p⃗2
mc

, (1)

where ĥ is a single-particle (s.p.) Hamiltonian and
vpair(r⃗1, r⃗2) is the pairing interaction between the two
valence neutrons. The last term is the two-body part
of the recoil kinetic energy of the core nucleus.

The eigen-functions ψnljm(r⃗) of ĥ is given by

ψnljm(r⃗) = ϕnlj(r)Yjlm(r̂) =
unlj(r)

r
Yjlm(r̂), (2)

where ϕnlj(r) and Yjlm(r̂) are the radial and spin angu-
lar parts of the s.p. wave function, respectively. Using
these eigen-functions, the two-particle wave function
for the ground state of the three-body system with
spin-parity of Jπ = 0+ is given as

Ψ(r⃗1, r⃗2) =
∑

n,n′,l,j

Cnn′lj [ψnlj(r⃗1)ψn′lj(r⃗2)]
J=0, (3)

where the coefficients Cnn′lj are calculated by di-
agonalizing the three-body Hamiltonian (1). The
one-particle density constructed with this two-particle
wave function is given by

ρ(r⃗) =

∫
dr⃗′|Ψ(r⃗, r⃗′)|2 =

1

4π

∑
k,l,j

����
ũklj(r)

r

����
2

, (4)

where ũklj(r) is defined as ũklj(r) ≡
∑

n Cnklj unlj(r).
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Fig. 1. The radial part of the quasi-particle wave function,

ũ2s1/2(r), defined in Eq. (4), for the weakly bound 2s1/2
state in 24O. In the uncorrelated case, the two valence

neutrons occupy the 2s1/2 state at ϵ = −0.275 MeV,

while the continuum states are also taken into account

in the three-body model calculations. A zero-range

pairing interaction is employed, which yields a ground

state energy of Eg.s. = −2.46 MeV. The solid line

shows the total wave function, while the dashed and

dot-dashed lines denote its bound state and continuum

state contributions, respectively.

Note that this is in a similar form as the one-
particle density in the HFB approximation, especially
if the quasi-particle wave function is expended on the
Hartree-Fock basis, unlj .

2)

The solid line in Fig. 1 shows the radial dependence
of the quasi-particle wave function for the weakly-
bound 2s1/2 state; that is, ũklj(r) with (klj) = 2s1/2
in 24O. The dashed and dot-dashed lines show its de-
composition into the bound state and the continuum
state contributions, respectively. They are defined as

ũklj(r) = ũ
(b)
klj(r) + ũ

(c)
klj(r)

=
∑

n=2s1/2

Cnklj unlj(r)+
∑

n=cont.

Cnklj unlj(r). (5)

The main feature of this quasi-particle wave function
is that the bound state and continuum state contri-
butions largely cancel each other outside the potential
while the two components contribute coherently in the
inner region. We recognise that the localization due
to a coherent superposition of continuum states is the
same mechanism as the formation of a localized wave
packet. This is an essential ingredient of the pairing
anti-halo effect, that is, the formation of a localized
wave packet induced by a pairing interaction.
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Interplay between isoscalar and isovector correlations
in neutron-rich nuclei†

I. Hamamoto∗1,∗2 and H. Sagawa∗1,∗3

The interplay between isoscalar (IS) and isovector
(IV) correlations has been an attractive and centrally
placed topic in the study of nuclear structure. In the
analysis of scattering data by IS particles such as α par-
ticles it is often assumed that IS particles excite only
IS strength. This assumption is generally incorrect if
N̸=Z for the target nuclei. For example, in nuclei with
neutron excess, IS operators excite IS moments, but
the strong neutron-proton forces may tend to main-
tain the local ratio of neutrons to protons. Then, the
presence of neutron excess N>Z implies that IV mo-
ments may also be excited by IS particles.1) The ex-
change of the above roles of IS and IV excitations in
the response is expected to be true as well. That is, IV
operators may produce IS moments generally in nuclei
with N ̸=Z except for the case in which the IS moment
corresponds to the center of mass motion.

To study this issue, we employ the self-consistent
Hartree-Fock (HF) plus the random-phase approxi-
mation (RPA) with Skyrme interactions in neuron-
rich oxygen isoyopes, simultaneously including both
IS and IV interactions. The RPA response function
is estimated in coordinate space to properly take into
account the continuum effect for the IS compression
dipole (ISCD) operator:2)

Dλ=1, τ=0
µ =

∑
i

(
r3i −

5

3
⟨r2⟩ri

)
Y1µ(r̂i). (1)

Figure 1 shows the calculated RPA strength for the
ISCD operator. We note the following points. (a) We
very often obtain a large portion of ISCD strength in
an energy interval several MeV above the threshold.
This large strength appearing at an energy much lower
than the energy of the ISCD giant resonance (GR),
which is recognized as a very broad “resonance” found
for Ex>24 MeV in Fig. 1, originates from the possi-
ble presence of occupied weakly bound low-ℓ neutron
orbits together with the strong r-dependence (r3) of
the ISCD operator. (b) When IV interaction is in-
cluded on top of IS interaction, the heights of many
lower-lying IS peaks become lower and the peak en-
ergies may shift to slightly higher energies via the IV
components contained in those IS peaks because of the
repulsive nature of the IV interaction. (c) There are
some peaks denoted by the solid curve, which may not
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Fig. 1. RPA strength of the isoscalar compression dipole

(ISCD) of 22O calculated using the SLy4 interaction as

a function of excitation energy (Ex). The solid curve

expresses the strength obtained by including both IS

and IV interactions in RPA, while the dotted curve ex-

presses the strength obtained by including only the IS

interaction.

be understood in the manner above (b). An example
is the broad peak around 18.5 MeV in the solid curve.
The IS peaks around 14.0 and 18.5 MeVn have no triv-
ial corresponding peaks in the dotted curve. The same
behavior is also found in the response for the IV dipole
operator interchanging the roles of IV and IS correla-
tions; the IV dipole peak appears at approximately
14 MeV only when both IS and IV interactions are
included in the RPA response. We may call the rel-
atively broad peak around Ex = 14 MeV pigmy res-
onance with both isoScalar and isoVector correlations
(“iS-iV pigmy resonance”). The pigmy resonance is
interpreted as neither the IS strength induced by a
strong IV peak nor the IV strength induced by a strong
IS peak, owing to the presence of neutron excess. It
is a relatively broad resonance having an energy much
lower than the energies of both IVD GR and ISCD
GR, but it gathers the collectivity of low-lying IS and
IV strengths. The strong neutron-proton interaction
can be responsible for controlling the isospin structure
of normal modes. In this study, it is explicitly shown
that in the scattering by isoscalar (isovector) particles
on N ̸=Z even-even nuclei isovector (isoscalar) strength
in addition to isoscalar (isovector) strength may be
populated.
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