Reduction in Néel Temperature of La₂CuO₄ Nanoparticles

S. Winarsih,^{*1,*2} F. Budiman,^{*3,*4} H. Tanaka,^{*3} T. Goto,^{*5} T. Adachi,^{*5} B. Kurniawan,^{*2} B. Soegijono,^{*2} and I. Watanabe^{*1,*2}

Recent reports on antiferromagnetic nanoparticles focus on the reduction in Néel temperature (T_N) , the emergence of superparamagnetic behavior, and the increase in the band gap value.^{1–3)} However, there is no unified research on their magnetically ordered state. The cause of T_N reduction has also not been investigated. In order to overcome this situation, a study on the magnetic properties of La₂CuO₄ nanoparticles (LCO NPs) using muon spin relaxation (μ SR) and NMR is suggested. La₂CuO₄ is a mother compound of high- T_c cuprate oxides that has been well established by experiments and theoretical methods; thus, a probing nano-sized effect in this LCO system can be achieved.⁴

LCO NPs used in the present study were successfully obtained through the sol-gel method. A detailed explanation about sample preparation has been reported in our previous paper.⁵⁾ Zero-field (ZF) μ SR on LCO NPs was carried out at RIKEN-RAL Muon Facility in the UK, using a single pulse positive surface muon beam.

ZF- μ SR time spectra of LCO NPs with a particle size of 96 nm are shown in Fig. 1. The time spectra were analyzed by using Eq. (1). The first component represents muon spin precession and the second component represents the slow relaxation behavior beyond 1 μ s. It is shown that muon spin precession does exist in LCO NPs and it disappears at 100 K. Muon spin precession indicates the formation of the long-range ordered (LRO)

Fig. 1. ZF- μ SR time spectra of La₂CuO₄ NPs with a particle size of 96 nm.

*1 RIKEN Nishina Center

- *2 Department of Physics, Universitas Indonesia
- *³ Department of Human Intelligence Systems, Kyushu Institute of Technology
- ^{*4} School of Electrical Engineering, Telkom University
- *5 Department of Physics, Sophia University

Fig. 2. Temperature dependence of the internal field at the muon site in LCO NPs with a particle size of 96 nm.

state.

$$A(t) = A_1 e^{-\lambda_1 t} \cos(\omega t + \phi) + A_2 e^{-\lambda_2 t}$$
(1)

Figure 2 depicts the temperature dependence of the internal field at the muon site, $H_{\rm int}$, of LCO NPs with a particle size of 96 nm. It is shown that $H_{\rm int}$ starts to increase below ~ 60 K, indicating that the $T_{\rm N}$ of this sample is ~ 60 K; this is strongly suppressed compared to the bulk LCO, which has a $T_{\rm N}$ of ~ 320 K.⁴ H_{int} reaches a saturated value ≈ 420 G at low temperatures. This means that LCO NPs have almost the same saturated internal field value as that observed in bulk LCO.⁴⁾ It is concluded that the nano-sized effect causes the reduction in $T_{\rm N}$ but does not affect the internal field at the muon site. These two phenomena are also observed in a hole- doped $La_{2-x}Sr_xCuO_4$ bulk system.⁶⁾ However, the resistivity of LCO NPs does not show indication of superconducting behavior. The reduction in the $T_{\rm N}$ of LCO NPs may be owing to the phase separation into fully antiferromagnetic and paramagnetic regions. Our ¹³⁹La NMR results also show that phase separation does exist in LCO NPs. Further analysis is required to describe this phase separation so that the cause of the reduction in $T_{\rm N}$ of LCO NPs can be clearly explained.

References

- 1) X. G. Zheng et al., Phys. Rev. B 72, 014464 (2005).
- D. Caruntu *et al.*, J. Phys. D, Appl. Phys. **40**, 5801 (2007).
- M. Enhessari *et al.*, Mater. Sci. Semicond. Process 16, 1517 (2013).
- 4) J. I. Budnick et al., Phys. Lett. A 124, 1 (1987).
- 5) S. Winarsih et al., Key. Eng. Mater (2019). [in press].
- 6) E. Stilp et al., Phys. Rev. B 88, 064419 (2013).