Production cross sections of Mo, Nb and Zr radioisotopes from α -induced reaction on ^{nat}Zr[†]

T. Murata,^{*1,*2,*3} M. Aikawa,^{*3,*2} M. Saito,^{*3,*2} N. Ukon,^{*4,*2} Y. Komori,^{*2} H. Haba,^{*2} and S. Takács^{*5}

The most important medical radioisotopes at present are 99m Tc $(T_{1/2} = 6.0 \text{ h})$ and its generator 99 Mo $(T_{1/2} = 66.0 \text{ h})$. Nuclear reactions to produce 99 Mo using accelerators are energetically investigated worldwide. One of the charged-particle reactions used to create 99 Mo is the 96 Zr $(\alpha, x)^{99}$ Mo reaction. Three experimental data ${}^{1-3}$ were found in a literature survey. The three datasets, however, show quite different shapes from each other. Therefore, we performed two experiments to measure the cross sections of the 96 Zr $(\alpha, x)^{99}$ Mo reaction. In addition, the cross sections for the production of 93m Mo, ${}^{90g, 92m, 95g, 95m, 96}$ Nb, and ${}^{88, 89g, 95}$ Zr isotopes were measured.

Two independent irradiations using different targets and α -beam energies were performed at the RIKEN AVF cyclotron. The stacked-foil technique, activation method, and high-resolution γ -ray spectrometry were used. Two stacked targets consisted of ^{nat}Zr foils of different thicknesses (6.75 and 13.22 mg/cm^2) and ^{nat}Ti foils $(2.43 \text{ and } 2.40 \text{ mg/cm}^2)$. The targets were respectively irradiated for 2 h by α beams of two different energies, namely 29 and 50 MeV. The incident beam energies were determined by using the time-of-flight method.⁴⁾ The energy degradation in the targets was calculated using the SRIM code.⁵⁾ The average intensity measured by a Faraday cup was about 400 nA in both cases. The γ lines from the decay of the radioisotopes for each irradiated foil were measured using an HPGe detector.

The excitation function of the ^{nat}Zr(α , x)⁹⁹Mo reaction was derived from measurements of the γ line at 739.500 keV ($I_{\gamma} = 12.20\%$). The parent nuclei of ⁹⁹Mo, ^{99g}Nb ($T_{1/2} = 15.0$ s), and ^{99m}Nb ($T_{1/2} = 2.5$ min), decayed during cooling times longer than 47 h. The cross sections of ⁹⁶Zr were deduced by taking into account the isotopic composition of natural zirconium. The results are shown in Fig. 1 and compared with previous experimental data¹⁻³⁾ and the TENDL-2017 data.⁶⁾ Our results are in complete agreement with the recent experimental data,³⁾ but very different from the others. Based on our measured excitation function, the end of bombardment activity of ⁹⁹Mo was deduced with the

- *1 School of Science, Hokkaido University
- *² RIKEN Nishina Center
- *³ Graduate School of Biomedical Science and Engineering, Hokkaido University
- *4 Advanced Clinical Research Center, Fukushima Medical University
- $^{*5}\,$ Institute for Nuclear Research, Hungarian Academy of Sciences (ATOMKI)

Fig. 1. Excitation function of the 96 Zr(α, x) 99 Mo reaction.

Fig. 2. End of bombardment activity of $^{99}\mathrm{Mo}$ for 1 h irradiation.

stopping powers obtained using the SRIM code.⁵⁾ Our result shown in Fig. 2 is almost consistent with the two datasets,^{3,7)} but larger than one dataset.²⁾

References

- D. P. Chowdhury *et al.*, Nucl. Instrum. Methods Phys. Res. B **103**, 261 (1995).
- G. Pupillo *et al.*, J. Radional. Nucl. Chem. **302**, 911 (2014).
- M. Hagiwara *et al.*, J. Radioanal. Nucl. Chem. **318**, 569 (2018).
- T. Watanabe *et al.*, Proc. 5th Int. Part. Accel. Conf. (IPAC2014), 3566 (2014).
- 5) SRIM: the Stopping and Range of Ions in Matter, http://www.srim.org/.
- 6) A. J. Koning et al., Nucl. Data Sheets 113, 2841 (2012).
- 7) K. Abe et al., J. Nucl. Mater. 123, 972 (1984).

 $^{^\}dagger$ Condensed from the article in Appl. Radiat. Isot. 144, 47 (2019)